Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 335-344     CSTR: 32134.14.1005.4537.2023.333      DOI: 10.11902/1005.4537.2023.333
  研究报告 本期目录 | 过刊浏览 |
含双腐蚀缺陷管道的氢浓度分布模拟
郭诗雯1,2, 吴浩志1,2, 董绍华1,2(), 陈林1,2, 程玉峰3
1.中国石油大学(北京)安全与海洋工程学院 北京 102249
2.中国石油大学(北京) 应急管理部油气生产安全与应急技术重点实验室 北京 102249
3.Schulich School of Engineering, University of Calgary, Calgary T2N 1N4
Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects
GUO Shiwen1,2, WU Haozhi1,2, DONG Shaohua1,2(), CHEN Lin1,2, CHENG Frank3
1.School of Safety and Ocean Engineering, China University of Petroleum Beijing, Beijing 102249, China
2.Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, University of Petroleum Beijing, Beijing 102249, China
3.Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
引用本文:

郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
Shiwen GUO, Haozhi WU, Shaohua DONG, Lin CHEN, Frank CHENG. Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 335-344.

全文: PDF(4375 KB)   HTML
摘要: 

为了研究含双腐蚀缺陷管道上的氢浓度分布规律,本文建立了应力场和氢扩散场耦合的有限元模型,针对双腐蚀缺陷间的应力耦合行为,探究了腐蚀缺陷长度、缺陷间距以及管道所受拉伸应变对管材中氢扩散富集行为的影响机制。结果表明,腐蚀缺陷的存在导致氢原子在管道内发生局部富集,富集区最大氢浓度数值随拉伸应变的增大和缺陷长度的减小而升高,同时,最大氢浓度位置发生改变。而双缺陷在间距足够大时不再对氢扩散和富集产生叠加影响,可看作两个独立的缺陷。研究成果为含双腐蚀缺陷管道在输氢环境中的安全评价提供了理论支撑。

关键词 双腐蚀缺陷氢分布有限元模拟X52管线钢    
Abstract

To deliever mixed natural gas and hydrogen with the existed natural gas pipelines is an important way to achieve efficient hydrogen transportation. However, corrosion defects present on these aged pipelines will affect the diffusion and enrichment of hydrogen atoms, potentially causing hydrogen embrittlement in the pipeline steel and further leading to the pipeline failure. In addition, corrosion defects on pipelines often exist in the form of adjacent double corrosion defects and even multiple corrosion defect groups. The interaction between adjacent defects can complicate the hydrogen diffusion and enrichment behavior, and ultimately affect the hydrogen induced failure behavior of the pipeline. In order to study the distribution of hydrogen concentration on pipelines containing double corrosion defects, a finite element model coupled with stress field and diffusion field was developed. The influence mechanism of corrosion defect length, defect spacing and applied tensile strain on hydrogen diffusion and enrichment behavior in steel was investigated in terms of the stress coupling behavior between the two corrosion defects. The results showed that the existence of corrosion defects caused the accumulation of hydrogen atoms in steel, and the value and location of the maximum hydrogen concentration in accumulation area changed with tensile strain, defect length and defect spacing. However, when the distance between the two defects is large enough, they will not have a superposition effect on the hydrogen diffusion and enrichment, and thus they can be regarded as two independent defects. This study provides a theoretical reference for the safety assessment of hydrogen damage in hydrogen transmission pipelines with double corrosion defects.

Key wordsdouble corrosion defects    hydrogen distribution    finite element modeling    X52 pipeline steel
收稿日期: 2023-10-23      32134.14.1005.4537.2023.333
ZTFLH:  TE832  
基金资助:中国石油大学(北京)科研基金(2462023BJRC020)
通讯作者: 董绍华,E-mail: shdong@cup.edu.cn,研究方向为管道完整性管理
Corresponding author: DONG Shaohua, E-mail: shdong@cup.edu.cn
作者简介: 郭诗雯,女,1995年生,博士生
图1  含双腐蚀缺陷管道的二维模型示意图
图2  在0.5%的拉伸应变下,长度10、20 mm单缺陷和相距0、5、10 mm双缺陷处的静水应力分布
图3  在0%,0.1%,0.2%和3%的拉伸应变下,长度20 mm单缺陷与相距0 mm的双缺陷处的氢浓度分布
Tensile strain / %Defect spacing/mm
05101520
01010101010
0.110.0710.0810.0910.0910.09
0.210.59#10.5310.5510.5310.53
0.510.99#11.15*10.9810.9210.92
111.18*11.89*11.68*11.1711.17
211.72*12.73*13.01*11.5611.56
312.06*12.95*13.91*12.0012.00
表1  不同拉伸应变下,不同间距的双缺陷处氢浓度最大值
图4  0.5%的拉伸应变下,不同间距双缺陷处氢浓度分布
图5  1%的拉伸应变下,不同间距双缺陷处氢浓度分布
图6  不同间距的双腐蚀缺陷模型底边氢浓度分布
Tensile strain/%Defect length/mm
81012
0101010
0.110.1410.0910.06
0.210.7310.5510.43
0.511.2310.9810.79*
0.611.3211.08*10.95*
111.88*11.68*11.46*
213.21*13.01*12.53*
314.01*13.91*13.36*
表2  不同缺陷长度下,不同间距的双缺陷处氢浓度最大值
图7  间距10 mm时,不同长度的双缺陷处氢浓度分布

Tensile strain

%

Defect spacing / mm
0

20 mm

single defect

101520

10 mm

single defect

0101010101010
0.110.0710.0210.0910.0910.0910.10
0.210.59#10.36#10.5510.5310.5310.58
0.510.99#10.64#10.9810.9210.9210.97
111.18*10.75#11.68*11.1711.1711.21
211.72*11.13&13.01*11.5611.5611.55
312.06*11.27&13.91*12.0012.0011.94&
表3  单缺陷与双缺陷处氢浓度最大值
图8  间距0 mm双缺陷和单个长度20 mm缺陷在0.5%和1%的拉伸应变下氢浓度分布
图9  间距15 mm双缺陷和单个长度10 mm缺陷在0.5%和1%的拉伸应变下氢浓度分布
图10  长度为10和20 mm单缺陷模型底边氢浓度分布
1 Capurso T, Stefanizzi M, Torresi M, et al. Perspective of the role of hydrogen in the 21st century energy transition[J]. Energy Convers. Manage., 2022, 251: 114898
doi: 10.1016/j.enconman.2021.114898
2 Opinions of the State Council of the CPC Central Committee on completely, accurately and comprehensively implementing the new development concept and doing a good job of carbon peak and carbon neutralization[EB/OL]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm?eqid=e150e9910013963200000002647055a2, 2021-10-24
2 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm?eqid=e150e9910013963200000002647055a2, 2021-10-24
3 Filippov S P, Yaroslavtsev A B. Hydrogen energy: development prospects and materials[J]. Russ. Chem. Rev., 2021, 90: 627
doi: 10.1070/RCR5014
4 Van Der Zwaan B C C, Schoots K, Rivera-Tinoco R, et al. The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation[J]. Appl. Energy, 2011, 88: 3821
doi: 10.1016/j.apenergy.2011.05.019
5 Tan K, Mahajan D, Venkatesh T A. Computational fluid dynamic modeling of methane-hydrogen mixture transportation in pipelines: Estimating energy costs[J]. MRS Adv., 2022, 7: 388
doi: 10.1557/s43580-022-00243-0
6 Hall J E, Hooker P, Jeffrey K E. Gas detection of hydrogen/natural gas blends in the gas industry[J]. Int. J. Hydrogen Energy, 2021, 46: 12555
doi: 10.1016/j.ijhydene.2020.08.200
7 Ozturk M, Dincer I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications[J]. Int. J. Hydrogen Energy, 2021, 46: 31511
doi: 10.1016/j.ijhydene.2021.07.066
8 Dodds P E, Staffel I, Hawkes A D, et al. Hydrogen and fuel cell technologies for heating: A review[J]. Int. J. Hydrogen Energy, 2015, 40: 2065
doi: 10.1016/j.ijhydene.2014.11.059
9 Zhou J, Horsley D, Rothwell B. Application of strain-based design for pipelines in permafrost areas[A]. 2006 International Pipeline Conference[C]. Calgary, 2006
10 Abdelmoety A K, Kainat M, Yoosef-Ghodsi N, et al. Strain-based reliability analysis of dented pipelines using a response surface method[J]. J. Pipeline Sci. Eng., 2022, 2: 29
doi: 10.1016/j.jpse.2021.11.002
11 Xu L Y, Cheng Y F. Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain[J]. Int. J. Pressure Vessels Piping, 2012, 89: 75
doi: 10.1016/j.ijpvp.2011.09.008
12 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions[J]. Int. J. Hydrogen Energy, 2021, 46: 34469
doi: 10.1016/j.ijhydene.2021.07.217
13 Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: can it be used to mitigate embrittlement?[J]. Int. J. Hydrogen Energy, 2011, 36: 10141
doi: 10.1016/j.ijhydene.2011.05.027
14 Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steel: a review[J]. Int. J. Hydrogen Energy, 2018, 43: 14584
doi: 10.1016/j.ijhydene.2018.06.064
15 Louthan Jr M R. Strain localization and hydrogen embrittlement[J]. Scr. Metall., 1983, 17: 451
doi: 10.1016/0036-9748(83)90329-0
16 Song J, Curtin W A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system[J]. Acta Mater., 2014, 68: 61
doi: 10.1016/j.actamat.2014.01.008
17 He S, Ecker W, Pippan R, et al. Hydrogen-enhanced decohesion mechanism of the special Σ5(012)[100] grain boundary in Ni with Mo and C solutes[J]. Comput. Mater. Sci., 2019, 167: 100
doi: 10.1016/j.commatsci.2019.05.029
18 Koyama M, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel[J]. Acta Mater., 2014, 70: 174
doi: 10.1016/j.actamat.2014.01.048
19 Sun Y H, Cheng Y F. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review[J]. Eng. Fail. Anal., 2022, 133: 105985
doi: 10.1016/j.engfailanal.2021.105985
20 API. API 579 Recommended practice for fitness-for-service[S]. Washington: API, 2000
21 ASME. ASME B31 G-2009 Manual for determining the remaining strength of corroded pipelines[S]. New York: ASME, 2009
22 DNV. DNV-RP-F101 Corroded pipelines[S]. Norway: DNV, 2015
23 British Standards Institution. BS 7910-2005 Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London: BSI, 2005
24 National Energy Administration. SY/T 6151-2009 Assessment of corroded steel pipelines[S]. Beijing: Petroleum Industry Press, 2010
24 国家能源局. SY/T 6151-2009 钢质管道管体腐蚀损伤评价方法[S]. 北京: 石油工业出版社, 2010
25 Coulson K E W, Worthingham R G. Standard damage-assessment approach is overly conservative[J]. Oil Gas J., 1990, 88: 7084745
26 O’Grady II T J, Hisey D T, Kiefner J F. Evaluating corroded pipe-conclusion: pressure calculation for corroded pipe developed[J]. Oil Gas J., 1992, 90: 84
27 Sun Y B, Jia W L, Zhang Y M, et al. Calculation of residual strength of L245NCS steel pipe with double corrosion defects of different size[J]. Chin. J. Appl. Mech., 2022, 39: 367
27 孙溢彬, 贾文龙, 张洋铭 等. 含不同尺寸双腐蚀缺陷L245NCS钢管剩余强度计算[J]. 应用力学学报, 2022, 39: 367
28 Feng X X, Yu Y, Xu L X, et al. Critical failure pressure of submarine pipeline with double corrosion defect[J]. China Offshore Platform, 2018, 33(5): 87
28 冯欣鑫, 余 杨, 徐立新 等. 双腐蚀缺陷海底管道临界失效压力[J]. 中国海洋平台, 2018, 33(5): 87
29 Xiong C B, Ye Z, Yang G, et al. Analysis on failure pressure of submarine pipelines under the influence of double corrosion defects[J]. Mater. Prot., 2022, 55(S1): 52
29 熊春宝, 叶 壮, 杨 光 等. 双腐蚀缺陷影响下的海底管道失效压力分析[J]. 材料保护, 2022, 55(S1): 52
30 Andrews R M, Gallon N, Huising O J C. Assessing damaged pipelines transporting hydrogen[J]. J. Pipeline Sci. Eng., 2022, 2: 100066
doi: 10.1016/j.jpse.2022.100066
31 Zhang H, Tian Z G. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network[J]. Int. J. Hydrogen Energy, 2022, 47: 4741
doi: 10.1016/j.ijhydene.2021.11.082
32 Guo S W, Xu L Y, Dong S H, et al. Finite element modeling of hydrogen atom diffusion and distribution at corrosion defect on aged pipelines transporting hydrogen[J]. Int. J. Hydrogen Energy, 2023, 48: 13566
doi: 10.1016/j.ijhydene.2022.12.287
33 Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron[J]. Acta Metall., 1980, 28: 33
doi: 10.1016/0001-6160(80)90038-3
34 Gorban A N, Sargsyan H P, Wahab H A. Quasichemical models of multicomponent nonlinear diffusion[J]. Math. Model. Nat. Phenom., 2011, 6: 184
doi: 10.1051/mmnp/20116509
35 Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip[J]. J. Mech. Phys. Solids, 1999, 47: 971
doi: 10.1016/S0022-5096(98)00064-7
36 Cisneros M M, Lopez H F, Salas N, et al. Hydrogen permeability in a plasma nitrided API X52 steel[J]. Mater. Sci. Forum, 2003, 442: 85
doi: 10.4028/www.scientific.net/MSF.442
37 Yang F Q, Zhan W J, Yan T, et al. Numerical analysis of the coupling between hydrogen diffusion and mechanical behavior near the crack tip of titanium[J]. Math. Probl. Eng., 2020, 2020: 3618589
38 Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. J. Membr. Sci., 1995, 107: 1
doi: 10.1016/0376-7388(95)00102-I
39 Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip[J]. J. Mech. Phys. Solids, 1989, 37: 317
doi: 10.1016/0022-5096(89)90002-1
40 Hirth J P. Effects of hydrogen on the properties of iron and steel[J]. Metall. Trans., 1980, 11A: 861
41 McLellan A G. Non-hydrostatic thermodynamics of chemical systems[J]. Proc. Roy. Soc., 1970, 314A: 443
42 Hafsi Z, Mishra M, Elaoud S. Hydrogen embrittlement of steel pipelines during transients[J]. Proc. Struct. Integr., 2018, 13: 210
43 Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corros. Sci., 2012, 64: 145
doi: 10.1016/j.corsci.2012.07.012
[1] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[2] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[3] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.
[4] 吴欣强; 敬和民; 郑玉贵; 姚治铭; 柯伟 . 模拟工业炼油环境高温高流速状态的循环测试装置及其实验参数选择[J]. 中国腐蚀与防护学报, 2002, 22(1): 1-7 .
[5] 徐颖;袁路平;林栋梁;林建鸿;王正东;吴东棣. 堆焊结构的氢浓度分布及其对剥离断裂的影响[J]. 中国腐蚀与防护学报, 1995, 15(2): 112-118.