|
|
TP2紫铜在工业环境中腐蚀行为的研究 |
何逸1, 郑传波1,2( ), 戚浩宇2, 刘珍光2 |
1.江苏科技大学冶金工程学院 苏州 215000 2.江苏科技大学材料科学与工程学院 镇江 212000 |
|
Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments |
HE Yi1, ZHENG Chuanbo1,2( ), QI Haoyu2, LIU Zhenguang2 |
1.School of Metallurgy Engineering, Jiangsu University of Science and Technology, Suzhou 215000, China 2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China |
引用本文:
何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
Yi HE,
Chuanbo ZHENG,
Haoyu QI,
Zhenguang LIU.
Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 71-81.
1 |
Lu X Y, Feng X G, Zuo Y, et al. Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation [J]. Prog. Org. Coat., 2017, 104: 188
|
2 |
Zheng C B, Yi G. Investigating the influence of hydrogen on stress corrosion cracking of 2205 duplex stainless steel in sulfuric acid by electrochemical impedance spectroscopy [J]. Corros. Rev., 2017, 35: 23
doi: 10.1515/corrrev-2016-0060
|
3 |
Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650~750oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
|
3 |
韩瑞珠, 贾建文, 李 阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421
doi: 10.11902/1005.4537.2022.115
|
4 |
Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
4 |
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
5 |
Zuo X D, Zhu Z P, Cao J, et al. Corrosion behavior of copper in cyclic dry-wet environment with gas mixture of SO2 and H2S [J]. Corros. Sci. Prot. Technol., 2017, 29: 521
|
5 |
左羡第, 朱志平, 曹 颉 等. 干湿交替环境中SO2和H2S混合气体对紫铜T2的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 521
|
6 |
Shinato K W, Zewde A A, Jin Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors [J]. Corros. Rev., 2020, 38: 101
doi: 10.1515/corrrev-2019-0105
|
7 |
Wang Y, Xu W C, Jiang Q T, et al. Corrosion behavior of purple copper and brass H62 in real sea navigation marine atmosphere [A]. 2020 7th Conference on Marine Materials and Corrosion Protection and 2020 1st Conference on Durability of Reinforced Concrete and Safety of Facilities in Service [C]. Wuxi, 2020: 130
|
7 |
王 盈, 徐玮辰, 蒋全通 等. 紫铜与黄铜H62在实海航行海洋大气中的腐蚀行为研究 [A]. 2020第七届海洋材料与腐蚀防护大会暨2020第一届钢筋混凝土耐久性与设施服役安全大会摘要集 [C]. 无锡, 2020: 130
|
8 |
Kong D C, Dong C F, Ni X Q, et al. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment [J]. Appl. Surf. Sci., 2018, 455: 543
|
9 |
Wang B Q, Zhang X L, Yong X Y, et al. Numerical simulation of galvanic corrosion of TP2Y copper pipes coupled with steel pipes in a seawater pipe systems of ships [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 200
|
9 |
王炳钦, 张晓莲, 雍兴跃 等. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究 [J]. 中国腐蚀与防护学报, 2022, 42: 200
doi: 10.11902/1005.4537.2021.044
|
10 |
Huang H L, Pan Z Q, Guo X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer [J]. Corros. Sci., 2013, 75: 100
doi: 10.1016/j.corsci.2013.05.019
|
11 |
Li H T, Chen Z Y, Liu X C, et al. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in Humidified Pure Air [J]. J. Electrochem. Soc., 2018, 165: C608
doi: 10.1149/2.0771810jes
|
12 |
Wu T Q, Zhou Z F, Xu S, et al. A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation [J]. Eng. Fail. Anal., 2019, 98: 83
doi: 10.1016/j.engfailanal.2019.01.070
|
13 |
Tan Y T, Liu X X, Ma L R, et al. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions [J]. J. Mater. Eng. Perform., 2020, 29: 2324
doi: 10.1007/s11665-020-04741-w
|
14 |
Pei F, Liu G M, Liu X, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different water content [J]. Surf. Technol., 2017, 46: 240
|
14 |
裴 锋, 刘光明, 刘 欣 等. 不同湿度的酸性红壤中Q235钢-紫铜电偶腐蚀行为研究 [J]. 表面技术, 2017, 46: 240
|
15 |
Li B, Luo X G, Tang Y J, et al. Corrosion behavior of the dominant actinomycetes in soil on copper [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 345
|
15 |
李 波, 罗学刚, 唐永金 等. 土壤优势放线菌菌群对紫铜的腐蚀 [J]. 中国腐蚀与防护学报, 2015, 35: 345
|
16 |
Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
|
16 |
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
|
17 |
Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
|
18 |
Liu X, Li H H, Zhao X J, et al. Comparison of the corrosion behavior of copper tubes in formic acid and acetic acid environment [J]. Mater. Corros., 2021, 72: 1919
|
19 |
Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
|
20 |
Li H H, Liu X, Li D S, et al. An investigation on the mechanisms of ant nest corrosion of copper tube in formic acid environment [J]. Mater. Corros., 2023, 74: 138
|
21 |
Zhou J X, Yan L, Tang J, et al. Interactive effect of ant nest corrosion and stress corrosion on the failure of copper tubes [J]. Eng. Fail. Anal., 2018, 83: 9
|
22 |
Zhang Z X, Zheng C B, Yi G, et al. Investigation on the electrochemical corrosion behavior of TP2 copper and influence of BTA in organic acid environment [J]. Metals, 2022, 12:1629
doi: 10.3390/met12101629
|
23 |
Sasaki T, Itoh J, Horiguchi Y, et al. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements [J]. Corros. Sci., 2006, 48: 4339
doi: 10.1016/j.corsci.2006.03.016
|
24 |
Vogel G. Creeping corrosion of copper on printed circuit board assemblies [J]. Microelectron. Reliab., 2016, 64: 650
doi: 10.1016/j.microrel.2016.07.043
|
25 |
Demirkan K, Derkits G E, Fleming D A, et al. Corrosion of Cu under Highly Corrosive Environments [J]. J. Electrochem. Soc., 2010, 157: C30
|
26 |
Bernardi E, Chiavari C, Martini C, et al. The atmospheric corrosion of quaternary bronzes: an evaluation of the dissolution rate of the alloying elements [J]. Appl. Phys., 2008, 92A: 83
|
27 |
Liu W, Jiang Y K, Ge H H. Comparison of electrochemical corrosion behavior of copper in liquid film in atmosphere containing SO2 or H2S [J]. Corros. Prot., 2015, 36: 934
|
27 |
刘 伟, 蒋以奎, 葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较 [J]. 腐蚀与防护, 2015, 36: 934
|
28 |
Jiang Y, He Y H. Electrochemical corrosion behavior of micrometer-sized porous Ti3SiC2 compounds in NaCl solution [J]. Mater. Corros., 2020, 71: 54
doi: 10.1002/maco.201911051
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|