|
|
Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法 |
马雁, 蓝宇宁( ), 陈嘉威 |
华北电力大学核科学与工程学院 北京 102206 |
|
A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion |
MA Yan, LAN Yuning( ), CHEN Jiawei |
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China |
引用本文:
马雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
Yan MA,
Yuning LAN,
Jiawei CHEN.
A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 261-266.
1 |
Yang M X, Gao Y, Wang H. Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199
|
1 |
杨明馨, 高 阳, 王 辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 199
doi: 10.11902/1005.4537.2018.179
|
2 |
Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
|
2 |
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
|
3 |
Motta A T, Capolungo L, Chen L Q, et al. Hydrogen in zirconium alloys: a review [J]. J. Nucl. Mater., 2019, 518: 440
doi: 10.1016/j.jnucmat.2019.02.042
|
4 |
Tang R, Yang X X. Study on terminal solid solubility of hydrogen in N18, Zry-4 and M5 zirconium alloys [J]. Chin. J. Mater. Res., 2009, 23: 635
|
4 |
唐 睿, 杨晓雪. N18、Zry-4和M5锆合金中氢的固溶度 [J]. 材料研究学报, 2009, 23: 635
|
5 |
Bair J, Zaeem M A, Tonks M. A review on hydride precipitation in zirconium alloys [J]. J. Nucl. Mater., 2015, 466: 12
doi: 10.1016/j.jnucmat.2015.07.014
|
6 |
Sunil S, Verdhan N, Kapoor R, et al. Effect of orientation and presence of hydride on the fatigue crack growth behavior of Zr-2.5wt% Nb [J]. Int. J. Fatigue, 2016, 85: 49
doi: 10.1016/j.ijfatigue.2015.12.005
|
7 |
Nagase F, Fuketa T. Influence of hydride re-orientation on BWR cladding rupture under accidental conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 1211
doi: 10.1080/18811248.2004.9726350
|
8 |
Zhang Y, Qi H D, Song X P. Expansion deformation behavior of zirconium alloy claddings with different hydrogen concentrations [J]. J. Nucl. Mater., 2021, 554: 153082
doi: 10.1016/j.jnucmat.2021.153082
|
9 |
Xu C R, Zhao W J, Xie M, et al. Effect of hydrogen on ring tensile properties of N36 zirconium alloy cladding tubes [J]. Rare Met. Mater. Eng., 2017, 46: 3922
|
9 |
徐春容, 赵文金, 谢 梦 等. 氢对N36锆合金包壳管环向拉伸性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 3922
|
10 |
Lee H, Kim K M, Kim J S, et al. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition [J]. Nucl. Eng. Technol., 2020, 52: 352
doi: 10.1016/j.net.2019.07.032
|
11 |
Li X Y. Principle and tantalum-niobium applications of RH600 hydrogen mensuration equipment [J]. Hunan Nonferrous Met., 2013, 29(2): 74
|
11 |
李小阳. RH600氢测定仪的原理及在钽铌中的应用 [J]. 湖南有色金属, 2013, 29(2): 74
|
12 |
Pang S Q. Analysis of hydrogen in metals [J]. Dev. Appl. Mater., 1995, 10(2): 41
|
12 |
庞顺强. 金属中的氢分析技术 [J]. 材料开发与应用, 1995, 10(2): 41
|
13 |
Zhu C X. Gas phase quantitative hydrogen permeation method and Zr-4 alloy hydride quantitative metallography [J]. Rare Met. Mater. Eng., 1980, (4): 6
|
13 |
朱朝旭. 气相定量渗氢方法及锆-4合金氢化物定量金相 [J]. 稀有金属合金加工, 1980, (4): 6
|
14 |
Liu Z Y, Zhao W J, Peng Q, et al. Research on electrolytic hydrogen permeation of Zr-Sn-Nb alloy and determination of hydrogen content [A]. New Progress in Materials Science and Engineering in 2002 (Part 1) [C]. Beijing, 2002: 4
|
14 |
刘彦章, 赵文金, 彭 倩 等. Zr-Sn-Nb合金电解渗氢及氢含量确定研究 [A]. 2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集 [C]. 北京, 2002: 4
|
15 |
Schrire D I, Pearce J H. Scanning electron microscope techniques for studying Zircaloy corrosion and hydriding [A]. Zirconium in the Nuclear Industry: Tenth International Symposium [C]. Baltimore, 1994
|
16 |
Zeng W, Luan B F, Liu N. Hydride phases and hydride orientation in Zirconium alloys [J]. J. Mater. Eng., 2018, 46(6): 11
doi: 10.11868/j.issn.1001-4381.2016.001027
|
16 |
曾 文, 栾佰峰, 刘 娜. 锆合金中的氢化物相及氢化物取向 [J]. 材料工程, 2018, 46(6): 11
|
17 |
Wang J W. Study on the hydrogen content and cracking control of Nb-containing zirconium hydride moderator [D]. Beijing: General Research Institute for Nonferrous Metals, 2011
|
17 |
王建伟. 含Nb氢化锆慢化材料的氢含量和裂纹控制机理研究 [D]. 北京: 北京有色金属研究总院, 2011
|
18 |
Ells C E. Hydride precipitates in zirconium alloys (A review) [J]. J. Nucl. Mater., 1968, 28: 129
doi: 10.1016/0022-3115(68)90021-4
|
19 |
Une K, Ishimoto S, Etoh Y, et al. The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior [J]. J. Nucl. Mater., 2009, 389: 127
doi: 10.1016/j.jnucmat.2009.01.017
|
20 |
Tewari R, Krishna K V M, Neogy S, et al. Zirconium and its alloys: properties and characteristics [J]. Compr. Nucl. Mater. (Second Ed.), 2020, 7: 284
|
21 |
Cinbiz M N, Brown N R, Terrani K A, et al. A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding [J]. Ann. Nucl. Energy, 2017, 109: 396
doi: 10.1016/j.anucene.2017.05.058
|
22 |
Gómez F J, Rengel M A M, Ruiz-Hervias J, et al. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques [J]. J. Nucl. Mater., 2017, 489: 150
doi: 10.1016/j.jnucmat.2017.03.043
|
23 |
Gómez Sánchez F J, Rengel M A M, Ruiz-Hervias J. A new procedure to calculate the constitutive equation of nuclear fuel cladding from ring compression tests [J]. Prog. Nucl. Energy, 2017, 97: 245
doi: 10.1016/j.pnucene.2017.02.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|