中国腐蚀与防护学报, 2024, 44(1): 261-266 DOI: 10.11902/1005.4537.2023.008

研究报告

Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法

马雁, 蓝宇宁,, 陈嘉威

华北电力大学核科学与工程学院 北京 102206

A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion

MA Yan, LAN Yuning,, CHEN Jiawei

School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China

通讯作者: 蓝宇宁,E-mail:19897692662@163.com,研究方向为核反应堆材料

收稿日期: 2023-01-13   修回日期: 2023-04-04  

基金资助: 国家自然科学基金.  12275083
国家科技重大专项.  2019ZX06004009

Corresponding authors: LAN Yuning, E-mail:19897692662@163.com

Received: 2023-01-13   Revised: 2023-04-04  

Fund supported: National Natural Science Foundation of China.  12275083
National Science and Technology Major Project.  2019ZX06004009

作者简介 About authors

马雁,女,1973年生,博士,副教授

摘要

利用RH600/LECO定氢仪对Zr-Sn-Nb包壳管多个样品获取氢浓度的数据,结合样品横截面显微图像测量获取的氢化物面积分数的数据,推导出一种用于测算Zr-Sn-Nb包壳管中氢浓度的计算公式,即“截面金相法”。通过用文献中大量已知数据对该测算方法进行验证,结果表明,运用“截面金相法”测算出的氢浓度值准确度较高,与标称氢浓度值之间的误差< 6%。

关键词: Zr-Sn-Nb ; 包壳管 ; 腐蚀吸氢 ; 截面金相法

Abstract

Corrosion and hydrogen absorption of zirconium alloy cladding for PWRs is one of the main causes for cladding embrittlement and breakage failure. Therefore, rapid and accurate determination of hydrogen concentrations in zirconium alloys is of great importance to assess the integrity of the cladding. In this paper, we used the RH600/LECO hydrogen analyzer to measure the hydrogen concentration data for several samples of Zr-Sn-Nb cladding, meanwhile the corresponding data of hydrogenated area fraction were acquired by cross-sectional microscopic image measurements. On the bases of the two group of data, a formula was proposed to figure out the distribution of hydrogen concentrations in Zr-Sn-Nb cladding, namely the so called cross-sectional metallography method. This method was validated by using a large amount of known data from the existing literatures. The results showed that the hydrogen concentration values measured by the cross-sectional metallography method were highly accurate, and the error between the hydrogen concentration value and the nominal value is less than 6%.

Keywords: Zr-Sn-Nb ; cladding ; hydrogen corrosion ; transverse metallographical method

PDF (3396KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法. 中国腐蚀与防护学报[J], 2024, 44(1): 261-266 DOI:10.11902/1005.4537.2023.008

MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(1): 261-266 DOI:10.11902/1005.4537.2023.008

锆合金包壳管在压水堆核电厂正常运行工况下的老化问题之一是腐蚀吸氢。在压水堆320℃,15.5 MPa的冷却水环境中,锆包壳会与冷却介质发生腐蚀反应[1,2],产生的氢在某种程度上会被包壳管所吸收。随着服役时间的增加,包壳管中的氢浓度逐渐增加,直到寿期末时达到600~700 μg/g[3]。当锆合金吸氢量超过其极限固溶度时,过剩的氢会以氢化物的形式在锆基体中析出[4]。随着氢化物的增加,锆包壳会发生脆化甚至破损,影响反应堆的安全运行[5~7]。锆合金吸氢量对其力学性能的影响已有相关的研究结果,如Zhang等[8]对Zr-4合金进行了A-EDC实验,研究表明当吸氢浓度超过300 μg/g时,表面出现大量沿轴向的裂纹,降低其力学性能。徐春容等[9]研究了吸氢浓度对N36合金环向拉伸性能的影响,结果表明吸氢浓度超过150 μg/g时,延伸率随氢浓度的增加而降低。Lee等[10]对Zirlo合金进行单轴拉伸试验,研究表明其极限抗拉强度在氢浓度超过700 μg/g时有明显降低,均匀伸长率在氢含量超过600 μg/g时逐渐下降,在1400 μg/g时降为0%。因此,准确测定氢浓度对锆包壳管的力学性能评估及失效预测具有十分重要的意义。

目前,锆合金中氢浓度的测量方法主要有定氢仪法、对比金相图谱法和定量金相法3种。定氢仪法是通过熔融含氢样品将样品中的氢以分子态释放,然后利用加热的CuO将H2转化为水,通过红外检测器检测水含量,最后转换为氢浓度[11,12]。定氢仪法具有较高的测量精度,但是要求样品熔炉温度达到3000℃,氢含量测试设备真空度达到10-7 Pa等,测试成本很高。对比金相图谱法是制作含氢样品的显微图像,然后与标定氢浓度的显微图像进行对比,估算出样品中的氢浓度。标定氢浓度的显微图像的制作过程为:首先通过气相定量渗氢方法[13]得到多个不同氢浓度的样品,将该氢浓度作为标定氢浓度;然后对不同氢浓度试样的横截面进行显微照相,制作出锆包壳管在不同氢浓度下的截面显微图像。这种方法虽然速度较快,但具有较大的人为测量误差。定量金相法是通过统计样品显微图像中的氢化物体积分数值,然后将其带入经验公式计算出氢含量 [14]。定量金相法需要选取样品的横向、纵向和壁面3个方向的氢化物显微图像,重构样品的体视学特征并计算其体积分数,再计算出样品中氢浓度[14,15]。这种方法是通过测量合金中所含的氢化物,从而推导计算氢浓度,在计算中没有考虑固溶在锆晶格基体中的H,因此,测算值与定氢仪测定值之间的误差在10%左右,并且该方法从3个方向取样会破坏锆包壳管的完整性。

本文综合以上3种氢浓度的测定方法,通过开展定氢仪定氢实验、透射电子显微分析、横截面金相显微图像分析,针对核电厂新型包壳材料Zr-Sn-Nb合金,推导出一种新的包壳管中氢浓度测算方法-截面金相,并且利用文献数据开展了验证。该方法是一种精度较高,而且不需要破坏锆管完整性的科学定氢方法。

1 实验方法

实验选用西北锆管有限责任公司生产的新型Zr-Sn-Nb锆合金,其化学成分(质量分数,%)为:Sn 1.0,Nb 1.0,Fe 0.1,Cr < 0.005,O 0.14,Zr余量。实验通过对Zr-Sn-Nb包壳管进行预渗氢处理和高温锆水反应腐蚀吸氢,以获得不同氢浓度的锆合金样品。首先,对包壳管进行酸洗、烘干,去除表面的氧化膜;再将样品放入氢化炉,抽真空后升温至500℃;通入压力为0.12 MPa,流速为2.6 × 10-3 m3/min的H2,时间2~5 min,以获得不同氢浓度的样品。将渗氢样品放入盛有320℃纯水的高压釜中,模拟核电厂一回路锆水反应的腐蚀吸氢过程,反应时间为62 d。研究中选取了8个不同氢浓度的锆管样品进行分析。

利用RH600/LECO定氢仪测量Zr-Sn-Nb包壳管样品的氢浓度,每个样品取3次样进行氢浓度测定。首先,将样品用金刚石切割机切成30 mm × 1 mm × 1 mm的长方体;然后,依次用丙酮和四氯化碳清洗样品;最后,将样品放入电极炉中,加热至3000℃熔融样品,以高纯Ar携带被释放的H2,氢与加热的CuO反应生成水,用红外吸收光谱法测定水含量以确定样品中的氢浓度值。

将包壳管切出0.5 cm厚的圆环后以横截面为观测面,将两个包壳管圆环以侧面紧贴的方式用环氧树脂进行包埋;再用800#、1200#、1500#、2000#、3000#水磨砂纸及1 μm金刚石抛光液对样品的观测面进行研磨及机械抛光。使用D/max2500型X射线衍射仪(XRD)对样品进行相结构分析,Cu靶,扫描电压为40 kV,扫描电流为200 mA,扫描角度为30~80°,扫描步长为5°/min。

将锆合金管切出2.6 mm × 0.75 mm × 12 mm的薄片,将薄片镶嵌在内径为2.6 mm、外径为3.0 mm的铜管中,再将镶有锆合金的铜管切割成厚度在1 mm左右的圆片并研磨至50 μm。利用MTP-1A双喷减薄仪减出分析薄区。电解液为10%高氯酸和90%甲醇(体积分数)混合溶液,双喷电解电压为30 V,双喷电解电流为10 mA,使用液氮将温度控制在-40℃左右。利用Tecnai G2 F30 S-TWIN透射电子显微镜(TEM)进行样品观察,加速电压为300 kV。

使用SYJ-200型精密切割机切割出长度为1.2 cm的锆管样品;然后,用800#、1200#、1500#、2000#、3000#、5000#水砂纸对截面研磨。最后,进行化学侵蚀处理。化学侵蚀溶液为HNO3∶HF∶H2O = 4.5∶4.5∶1 (体积比),侵蚀时间为40 s。使用CN-Optec金相显微镜采集观测面的氢化物显微图像。最后使用Photoshop软件统计金相显微图中氢化物的面积分数。

2 实验结果

图1为8个不同氢浓度的Zr-Sn-Nb包壳管横截面金相显微图像,8个样品是通过渗氢后模拟锆水反应腐蚀吸氢所获得的。氢化物是沿环向延伸的黑色线条,如图1ae红色虚线框内所示,其长度和数量随氢浓度的增加而增加。根据氢化物面积分数统计方法对图1中Zr-Sn-Nb包壳管横截面的氢化物面积分数进行统计。图1各样品对应的统计结果分别为:0.0119,0.0246,0.0439,0.0526,0.0755,0.1008,0.1538和0.1980。

图1

图1   不同氢浓度的Zr-Sn-Nb包壳管吸氢样品的金相组织形貌

Fig.1   Microstructure photographs of hydrogen-absorbing samples of Zr-Sn-Nb alloy cladding with 20 μg/g (a), 39 μg/g (b), 74 μg/g (c), 89 μg/g (d), 120 μg/g (e), 160 μg/g (f), 260 μg/g (g) and 320 μg/g (h) hydrogen content


对于锆合金的氢化物析出相主要有ζγδε 4种[16]类型,它们对应的氢化物的化学计量式分别为ZrH0.5、ZrH、ZrH1.5-1.66、ZrH1.66-2。为了构建氢浓度计算公式,需要确定Zr-Sn-Nb包壳管在高温高压下锆水反应腐蚀吸氢中的氢化物析出相的类型,以确定对应的氢化物密度和氢化物中H的百万分质量比。因此,利用XRD和TEM确定Zr-Sn-Nb包壳管中的氢化物相。

图2为Zr-Sn-Nb包壳管样品的XRD。由图可见,样品中含有α-Zr相和δ-ZrH1.66相的衍射峰,说明模拟一回路锆水反应所获得的Zr-Sn-Nb包壳管样品中的氢化物相为δ-ZrH1.66相。图3是Zr-Sn-Nb包壳管样品的TEM明场像和氢化物选区衍射斑点。依据衍射斑点的标定,可以看出样品中的氢化物类型为δ,化学计量式为ZrH1.66。XRD和TEM的分析结果说明模拟一回路锆水反应所获得的Zr-Sn-Nb包壳管样品中的氢化物为δ-ZrH1.66。该δ氢化物的密度ρδ为5.65 g/cm3[17]δ氢化物中H的百万分质量比pm为:

pm=mH1.66mZr+mH1.66=1×1.6691.22+1×1.66
=17872×10-6                                        

其中,mZr为Zr的原子质量,mH为H的原子质量。

图2

图2   高温高压锆水反应腐蚀吸氢后Zr-Sn-Nb包壳管样品的XRD图

Fig.2   XRD pattern of Zr-Sn-Nb alloy cladding after reaction under high temperature and high pressure


图3

图3   高温高压锆水反应腐蚀吸氢后Zr-Sn-Nb包壳管中氢化物的TEM形貌像和选区衍射斑点

Fig.3   TEM bright field image (a) and corresponding SAED pattern (b) of hydrides in Zr-Sn-Nb alloy cladding after reaction under high temperature and high pressure


3 氢浓度计算公式推导

Zr-Sn-Nb包壳中的氢浓度计算公式的推导,是通过建立金相实验测量的氢化物的浓度值与定氢仪标定的氢浓度值之间的函数关系得到。由于截面金相法统计的是表面氢化物浓度,因此推导中的关键步骤是需要建立氢化物表面积分数(设为f)和体积分数(设为F)之间的关系。

设Zr-Sn-Nb合金基体与δ氢化物的总体积为V,则Zr-Sn-Nb合金中氢化物所占的体积分数F为:

F=VδV=VδVδ+Vmatrix=1-VmatrixVδ+Vmatrix

其中,Vδ为该δ氢化物的体积,Vmatrix为Zr-Sn-Nb合金基体的体积。

设Zr-Sn-Nb合金基体与δ氢化物的总质量为m,并将δ氢化物的质量mδ用密度和体积的乘积表示,则有:

m=mδ+mmatrix=mδ+ρmatrixVmatrix
=(mδ/Vmatrix+ρmatrix)Vmatrix       

其中,mmatrixρmatrix分别为Zr-Sn-Nb合金的质量和密度。

则Zr-Sn-Nb合金基体和该δ氢化物的总密度ρ可表示为:

ρ=mV=mδ+mmatrixVδ+Vmatrix=ρmatrix+mδ/VmatrixVmatrixVδ+Vmatrix

结合 式(2),将 式(4)化简为:

ρ=ρmatrix+mδ/Vmatrix1-F

其中,

mδVmatrix=mδV-Vδ=ρδ1/F-1=ρδF1-F

式(6)代入 式(5),得到总密度ρ与体积分数和各组分密度的关系:

ρ=ρmatrix+ρδF1-F1-F=ρmatrix1-F+ρδF

结合 式(2)和(7),可得到Zr-Sn-Nb合金中δ氢化物与基体的质量分数,即Zr-Sn-Nb合金中δ氢化物的浓度Wtδ

Wtδ=mδm=ρδVδρV=ρδρF

依据文献[18,19],室温下H在锆合金中的极限固溶度为1 μg/g,因此Zr-Sn-Nb合金中的总氢浓度等于氢化物中的氢浓度加上Zr-Sn-Nb合金中氢的极限固溶度1 μg/g。Zr-Sn-Nb合金中的氢浓度WtH与氢化物体积分数F的关系式为:

WtH=pmWtδ+1=pm1-ρmatrixρδ+ρmatrixρδ/F+1

Zr-Sn-Nb锆合金的密度ρmatrix = 6.51 g/cm3 [20]ρδ = 5.65 g/cm3。将已知参数代入 式(9),有:

WtH=17872-0.1522+1.1522/F+1

F=1.1522(WtH-1)17872+0.1522(WtH-1)

利用图1所示的各样品对应的Zr-Sn-Nb合金的氢浓度定氢仪标定值,使用 式(11)计算Zr-Sn-Nb包壳管中氢化物的体积分数,计算结果分别为0.0012,0.0024,0.0047,0.0057,0.0077,0.0102,0.0167和0.0206。

对包壳管横截面的氢化物面积分数f与计算出的氢化物体积分数F进行拟合,拟合曲线如图4所示。

图4

图4   氢化物体积分数F与面积分数f的关系

Fig.4   Relationship between hydride volume fractionFand area fraction f


图4可以看出,氢化物体积分数与面积分数呈线性相关,拟合的关系式为:

F=0.10558f

结合 式(10),得到基于Zr-Sn-Nb包壳管横截面显微图像的氢浓度计算公式:

WtH=17872f10.9131-0.1522f+1

4 对氢浓度计算公式的验证

为了验证推导出的Zr-Sn-Nb合金包壳管中的氢浓度计算 公式(13)的正确性,使用文献[8,21~23]给出一回路水腐蚀造成氢化的Zr-Sn-Nb合金包壳管,对其中给出的横截面显微图像利用 公式(13)进行氢浓度计算,并与文献中给定值进行比较。图5中横截面显微图像中的氢化物析出相均为δ相。

图5

图5   含氢Zr-Sn-Nb合金包壳管的显微照片[8,21~23]

Fig.5   Micrograph of Zr-Sn-Nb alloy cladding with 130 μg/g (a), 150 μg/g (b), 240 μg/g (c), 360 μg/g (d), 420 μg/g (e), 500 μg/g (f) hydride content[8,21-23]


利用氢化物面积分数方法统计图5显微图像的氢化物面积分数分别0.0792,0.0943,0.1547,0.2283,0.2521和0.2979。

利用 式(13)得到氢浓度的计算值WtH,计算与文献给定值WtH'之间的误差。氢浓度计算值及误差分析如表1所示。

表1   氢含量计算值及基于图5的误差分析

Table 1  Calculated value of hydrogen content and error analysis based on Fig.5

Micrograph

WtH / μg·g-1

Percentage error

between WtH and

WtH'

Fig.5a129.850.12%
Fig.5b154.643.63%
Fig.5c253.895.79%
Fig.5d375.074.19%
Fig.5e414.311.35%
Fig.5f489.902.02%

新窗口打开| 下载CSV


表1的结果可以得出,本文提出了一种新的用于测算Zr-Sn-Nb包壳管中氢浓度的科学定氢方法,利用测量的包壳管横截面的氢化物面积分数,即可快速准确地得到该横截面附近区域的氢浓度值,误差< 6%。现有的定氢方法中,定氢仪法测试氢浓度需要熔融样品,测试成本较高。金相图谱法只能粗略地估计氢浓度,精度较差。而相较于定量金相法,本文推导的截面金相法计算精度更高,且可以在测试后保留完整的锆管样品,因此本文提出的“截面金相法”具有更好的应用前景。

5 结论

通过开展定氢仪实验、透射电子显微分析(TEM)、金相分析,推导出基于横截面显微图像分析的氢浓度测算方法:“截面金相法”,并且利用文献数据对该方法进行了验证。得到以下结论:

(1) 对压水堆核电厂新型包壳管Zr-Sn-Nb合金开展锆水反应腐蚀吸氢,研究确定其析出的氢化物类型为δ。基于包壳管横截面显微图像的氢化物面积分数f统计,推导出腐蚀吸氢后Zr-Sn-Nb包壳管中的氢浓度计算公式为:

WtH=17872f10.9286-0.1522f+1

(2) 验证结果证明该方法计算值与标定值误差小于6%,表明该方法是一种精度较高,且无损锆包壳管完整性的科学定氢方法。

致谢

作者感谢中国原子能科学研究院胡勇在对材料进行预渗氢处理时提供的协助。

参考文献

Yang M X, Gao Y, Wang H.

Effect of Zn(CH3COO)2 addition on corrosion of ZIRLO alloy in simulated PWR primary loop medium with LiOH and H3BO3

[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 199

[本文引用: 1]

杨明馨, 高 阳, 王 辉.

添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响

[J]. 中国腐蚀与防护学报, 2020, 40: 199

DOI      [本文引用: 1]

对ZIRLO合金在360 ℃,18.6 MPa,含LiOH和H<sub>3</sub>BO<sub>3</sub>溶液的高温高压釜中进行了水侧腐蚀实验;并通过在其中的一个高压釜中加入乙酸锌,从而对比研究了加Zn对ZIRLO合金耐腐蚀性能的影响。结果表明:在腐蚀介质溶液中添加50 μg/kg乙酸锌对ZIRLO合金的腐蚀增重情况、氧化膜厚度、氧化膜中第二相种类及大小、氧化膜表层元素的种类、分布及价态并无显著影响,但降低了氧化膜表层沉积物中Fe的含量,并抑制了国产新锆合金腐蚀过程中的吸氢。

Liao J P, Mao Y L, Jin D S, et al.

Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197

[本文引用: 1]

廖家鹏, 毛玉龙, 金德升 .

锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究

[J]. 中国腐蚀与防护学报, 2023, 43: 197

DOI      [本文引用: 1]

阐述了影响燃料包壳表面污垢沉积行为的主要因素,通过设计并开展针对国产锆合金燃料包壳的污垢沉积试验,成功制备出含多孔基体和烟囱结构主要元素组成的燃料包壳氧化物污垢,污垢的主要成分为NiFe<sub>2</sub>O<sub>4</sub>、Fe<sub>2</sub>O<sub>3</sub>和NiO,并在污垢内部检测到LiBO<sub>2</sub>的析出,实现了对PWR堆芯燃料包壳污垢沉积的实验室模拟。

Motta A T, Capolungo L, Chen L Q, et al.

Hydrogen in zirconium alloys: a review

[J]. J. Nucl. Mater., 2019, 518: 440

DOI      [本文引用: 1]

Hydrogen absorbed into zirconium alloy nuclear fuel cladding as a result of the waterside corrosion reaction can affect the properties of nuclear fuel, principally through the precipitation of brittle hydride particles. Multiple phenomena are involved in this overall process: after hydrogen pickup degradation of mechanical properties is controlled by hydrogen transport, hydride precipitation and dissolution kinetics and the formation of specific mesoscale hydride microstructures. The precipitation of hydrides especially affects cladding ductility and fracture toughness, but can also affect other phenomena, including via stress-induced hydride reorientation. These processes can affect cladding performance both during normal operation and during extended dry storage, as hydride morphology can be modified during the preparatory vacuum drying processes. We review the processes of hydrogen transport, hydride precipitation and dissolution and formation of mesoscale hydride microstructures, and highlight where more research is needed, both from an experimental and from a modeling point of view. Crown Copyright (C) 2019 Published by Elsevier B.V.

Tang R, Yang X X.

Study on terminal solid solubility of hydrogen in N18, Zry-4 and M5 zirconium alloys

[J]. Chin. J. Mater. Res., 2009, 23: 635

[本文引用: 1]

唐 睿, 杨晓雪.

N18、Zry-4和M5锆合金中氢的固溶度

[J]. 材料研究学报, 2009, 23: 635

[本文引用: 1]

Bair J, Zaeem M A, Tonks M.

A review on hydride precipitation in zirconium alloys

[J]. J. Nucl. Mater., 2015, 466: 12

DOI      URL     [本文引用: 1]

Sunil S, Verdhan N, Kapoor R, et al.

Effect of orientation and presence of hydride on the fatigue crack growth behavior of Zr-2.5wt% Nb

[J]. Int. J. Fatigue, 2016, 85: 49

DOI      URL    

Nagase F, Fuketa T.

Influence of hydride re-orientation on BWR cladding rupture under accidental conditions

[J]. J. Nucl. Sci. Technol., 2004, 41: 1211

DOI      URL     [本文引用: 1]

Zhang Y, Qi H D, Song X P.

Expansion deformation behavior of zirconium alloy claddings with different hydrogen concentrations

[J]. J. Nucl. Mater., 2021, 554: 153082

DOI      URL     [本文引用: 4]

Xu C R, Zhao W J, Xie M, et al.

Effect of hydrogen on ring tensile properties of N36 zirconium alloy cladding tubes

[J]. Rare Met. Mater. Eng., 2017, 46: 3922

[本文引用: 1]

徐春容, 赵文金, 谢 梦 .

氢对N36锆合金包壳管环向拉伸性能的影响

[J]. 稀有金属材料与工程, 2017, 46: 3922

[本文引用: 1]

Lee H, Kim K M, Kim J S, et al.

Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition

[J]. Nucl. Eng. Technol., 2020, 52: 352

DOI      URL     [本文引用: 1]

Li X Y.

Principle and tantalum-niobium applications of RH600 hydrogen mensuration equipment

[J]. Hunan Nonferrous Met., 2013, 29(2): 74

[本文引用: 1]

李小阳.

RH600氢测定仪的原理及在钽铌中的应用

[J]. 湖南有色金属, 2013, 29(2): 74

[本文引用: 1]

Pang S Q.

Analysis of hydrogen in metals

[J]. Dev. Appl. Mater., 1995, 10(2): 41

[本文引用: 1]

庞顺强.

金属中的氢分析技术

[J]. 材料开发与应用, 1995, 10(2): 41

[本文引用: 1]

Zhu C X.

Gas phase quantitative hydrogen permeation method and Zr-4 alloy hydride quantitative metallography

[J]. Rare Met. Mater. Eng., 1980, (4): 6

[本文引用: 1]

朱朝旭.

气相定量渗氢方法及锆-4合金氢化物定量金相

[J]. 稀有金属合金加工, 1980, (4): 6

[本文引用: 1]

Liu Z Y, Zhao W J, Peng Q, et al.

Research on electrolytic hydrogen permeation of Zr-Sn-Nb alloy and determination of hydrogen content

[A]. New Progress in Materials Science and Engineering in 2002 (Part 1) [C]. Beijing, 2002: 4

[本文引用: 2]

刘彦章, 赵文金, 彭 倩 .

Zr-Sn-Nb合金电解渗氢及氢含量确定研究

[A]. 2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集 [C]. 北京, 2002: 4

[本文引用: 2]

Schrire D I, Pearce J H.

Scanning electron microscope techniques for studying Zircaloy corrosion and hydriding

[A]. Zirconium in the Nuclear Industry: Tenth International Symposium [C]. Baltimore, 1994

[本文引用: 1]

Zeng W, Luan B F, Liu N.

Hydride phases and hydride orientation in Zirconium alloys

[J]. J. Mater. Eng., 2018, 46(6): 11

DOI      [本文引用: 1]

As a fuel cladding materials of the nuclear reactor, water side corrosion and hydrogen absorption generated in zirconium alloys which due to the embrittlement of matrix and hydrogen induced delayed cracking. The hydride phases, hydride orientation and the effect of hydride orientation on mechanical properties of zirconium alloys were reviewed. The crystallographic orientation relationship between &alpha;-Zr matrix and hydrides(&gamma; and &delta;), the effect of texture, <em>Q</em> value, stress and annealing temperature on hydride orientation, the effect of hydride orientation on mechanical properties of zirconium alloy were primarily discussed. Meanwhile, the current problems were analyzed, for example, the mechanism of hydride orientation was not clear, the mechanism of hydride stress reorientation was controversial, <em>etc</em>. It was pointed out that the hydride orientation, crystallographic orientation relationship between hydrides and Zr matrix, hydride stress reorientation in Zr alloys require further investigation. Furthermore, the research on the hydrides in domestic new type high performance Zr alloy needs to be carried out.

曾 文, 栾佰峰, 刘 娜.

锆合金中的氢化物相及氢化物取向

[J]. 材料工程, 2018, 46(6): 11

[本文引用: 1]

Wang J W.

Study on the hydrogen content and cracking control of Nb-containing zirconium hydride moderator

[D]. Beijing: General Research Institute for Nonferrous Metals, 2011

[本文引用: 1]

王建伟.

含Nb氢化锆慢化材料的氢含量和裂纹控制机理研究

[D]. 北京: 北京有色金属研究总院, 2011

[本文引用: 1]

Ells C E.

Hydride precipitates in zirconium alloys (A review)

[J]. J. Nucl. Mater., 1968, 28: 129

DOI      URL     [本文引用: 1]

Une K, Ishimoto S, Etoh Y, et al.

The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior

[J]. J. Nucl. Mater., 2009, 389: 127

DOI      URL     [本文引用: 1]

Tewari R, Krishna K V M, Neogy S, et al.

Zirconium and its alloys: properties and characteristics

[J]. Compr. Nucl. Mater. (Second Ed.), 2020, 7: 284

[本文引用: 1]

Cinbiz M N, Brown N R, Terrani K A, et al.

A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding

[J]. Ann. Nucl. Energy, 2017, 109: 396

DOI      URL     [本文引用: 3]

Gómez F J, Rengel M A M, Ruiz-Hervias J, et al.

Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques

[J]. J. Nucl. Mater., 2017, 489: 150

DOI      URL    

Gómez Sánchez F J, Rengel M A M, Ruiz-Hervias J.

A new procedure to calculate the constitutive equation of nuclear fuel cladding from ring compression tests

[J]. Prog. Nucl. Energy, 2017, 97: 245

DOI      URL     [本文引用: 3]

/