Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1133-1139     CSTR: 32134.14.1005.4537.2022.386      DOI: 10.11902/1005.4537.2022.386
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究
李忠诚1, 陈圣刚2(), 郭全全3, 郭俊营1
1.深圳中广核工程设计有限公司 深圳 518031
2.中国矿业大学力学与土木工程学院 徐州 221116
3.北京航空航天大学交通科学与工程学院 北京 100191
Research on Corrosion Mechanism of Steel Liner of Nuclear Containment Vessel Based on COMSOL Model
LI Zhongcheng1, CHEN Shenggang2(), GUO Quanquan3, GUO Junying1
1.China Nuclear Power Design Co. Ltd., Shenzhen 518031, China
2.School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
3.School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(2967 KB)   HTML
摘要: 

基于COMSOL建立了钢衬里外侧腐蚀细观模型,在总结多国核电站钢衬里外侧腐蚀案例基础上,从异物、离子侵蚀两个方面对钢衬里外侧腐蚀成因及腐蚀机理展开计算分析。结果表明:混凝土浇筑前钢衬里在海洋环境中的长期暴露可引起侵蚀离子的表面不均匀积累,引发钢衬里发生以微电池为主的腐蚀,腐蚀速率随留存最大Cl-浓度的增大而增快;混凝土浇筑过程中遗留的异物 (以木块为主) 导致的钢衬里腐蚀以宏电池腐蚀为主,随着接触面处异物尺寸的减小,阴阳极面积比增大,腐蚀速率加快;同时,提高混凝土电阻率可有效降低钢衬里腐蚀速率。研究成果将为核电站安全壳的老化机理和防治措施提供技术参考。

关键词 安全壳钢衬里侵蚀离子异物宏电池腐蚀微电池腐蚀    
Abstract

Nuclear containment vessel is the third barrier to avoid the nuclear leakage. It is noted that severe outer corrosion of steel liners happened in several containment vessels around the world, which greatly threatened the integrity and tightness of liners of containment vessel. The outer corrosion is a great safety risk because it is perceptually invisible and hard to be maintenance. To the authors' knowledge, researches related to the ratter of outer corrosion are scare. No authoritative corrosion mechanism has been proposed. Based on the operating reports of several nuclear power plants and a mesoscopic corrosion models established by COMSOL, the corrosion mechanisms of the outer corrosion of steel liners were analyzed in the views of effects of corrosive ions and foreign materials. Results revealed that a long-time exposure of steel liners in the marine environment will generate the non-uniform accumulation of corrosive ions on the outer surface of liners, which is the reason for the microcell corrosion of outer corrosion of steel liners. Corrosion rate in this condition is decided by the maximum content of the non-uniformly distributed chloride. Besides, foreign materials (mainly wood blocks) unintended left behind during pouring concrete will also lead to electro-chemical corrosion, in which macrocell corrosion plays an important role. The corrosion rate was accelerated along with the decrease of the touching surface size between foreign materials and steel liners and with the increase of area ratio of cathode and anode. Meanwhile, the corrosion rate can be effectively mitigated by enhancing the concrete resistivity. The achievements in this paper can provide technical reference for the aging mechanisms and aging prevention measures of nuclear containment.

Key wordscontainment    steel liner    corrosive ion    foreign material    macrocell corrosion    microcell corrosion
收稿日期: 2022-12-07      32134.14.1005.4537.2022.386
ZTFLH:  TU503  
基金资助:国家重点研发项目(2019YFB1900903)
通讯作者: 陈圣刚,E-mail: csg.1988@hotmail.com,研究方向为混凝土结构及耐久性研究   
Corresponding author: CHEN Shenggang, E-mail: csg.1988@hotmail.com   
作者简介: 李忠诚,男,1971年生,教授级高级工程师

引用本文:

李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
LI Zhongcheng, CHEN Shenggang, GUO Quanquan, GUO Junying. Research on Corrosion Mechanism of Steel Liner of Nuclear Containment Vessel Based on COMSOL Model. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1133-1139.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.386      或      https://www.jcscp.org/CN/Y2023/V43/I5/1133

图1  混凝土与钢衬里组合结构安全壳的电化学腐蚀机理图
图2  混凝土的细观结构模型[21]
图3  Cl-侵蚀模型试验验证
图4  腐蚀电流密度的模拟计算结果与试验结果对比[26]
图5  安全壳混凝土内Cl-含量分布图
图 6  钢衬里腐蚀电流密度随Cl-含量的变化
图7  钢衬里外侧腐蚀情况下腐蚀电压分布

Dimension

mm×mm

Sc / Sa

ρ

Ω·m

I

A·m-2

vc

mm·a-1

T

a

5×51599∶12000.450.52911.34
10×10399∶12000.280.32918.23
20×2099∶12000.200.23525.52
40×4024∶12000.150.17634.03
80×805.25∶12000.120.14142.54
20×2099∶1200.620.738.22
20×2099∶15000.100.1250.00
20×2099∶110000.060.0785.71
表1  异物影响下钢衬里外侧腐蚀状态参数
图8  异物尺寸对钢衬里腐蚀的影响
图9  混凝土电阻率对钢衬里腐蚀影响
1 Liao K X, Wu J J, Li Y, et al. A primary study of the corrosion protection and control for NPP containment liner [J]. Corros. Prot., 2019, 40: 61
1 廖开星, 吴剑剑, 李 毅 等. 核电厂安全壳钢衬里的腐蚀防护与控制初探 [J]. 腐蚀与防护, 2019, 40: 61
2 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
2 焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
3 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
3 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
4 Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
4 向 超, 王家贞, 付华萌 等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107
5 Guo J Y, Li Z C, Li W X, et al. Research progress on corrosion and repair technology of steel linear of containment in US external nuclear power plants [J]. Build. Struct., 2022, 52(2): 127
5 郭俊营, 李忠诚, 李文旭 等. 美国在役核电厂安全壳钢衬里锈蚀及修复技术研究进展 [J]. 建筑结构, 2022, 52(2): 127
6 Petti J P, Naus D, Sagüés A, et al. Nuclear containment steel liner corrosion workshop: final summary and recommendation report: SAND2010-8718 [R]. Albuquerque: Sandia National Laboratories, 2011
7 Dunn D, Pulvirenti A, Klein P. Containment liner corrosion [A]. BusbyJ T, IlevbareG, AndresenP L. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [M]. Cham: Springer, 2011
8 Heoa M B, Leea H C, Lima D S, et al. Development of containment liner plate corrosion damage control technology in nuclear power plant [A]. Transactions of the Korean Nuclear Society Autumn Meeting [C]. Yeosu, Korea, 2018
9 Paek Y, Kim S, Yoon E, et al. Introduction of Containment Liner Plate (CLP) corrosion [A]. Transactions of the Korean Nuclear Society Spring Meeting [C]. Jeju, Korea, 2018
10 Matsushima I. Carbon steel—atmospheric corrosion [A]. Revie R W. Uhlig's Corrosion Handbook [M]. 3rd ed. New York: John Wiley and Sons, 2011: 515
11 Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair [M]. 2nd ed. Weinheim: Wiley-VCH, 2013
12 Rodrigues R, Gaboreau S, Gance J, et al. Reinforced concrete structures: a review of corrosion mechanisms and advances in electrical methods for corrosion monitoring [J]. Constr. Build. Mater., 2021, 269: 121240
doi: 10.1016/j.conbuildmat.2020.121240
13 Feng W P, Tarakbay A, Ali Memon S, et al. Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: a comparative review [J]. Constr. Build. Mater., 2021, 289: 123165
doi: 10.1016/j.conbuildmat.2021.123165
14 Tang Z J, Liao K X, Kong X L, et al. Diffusion of chloride ion into containment concrete under coastal environment [J]. Concrete, 2015, (5): 66
14 汤志杰, 廖开星, 孔祥龙 等. 滨海环境安全壳混凝土Cl-侵蚀规律研究 [J]. 混凝土, 2015, (5): 66
15 Leemann A, Moro F. Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity [J]. Mater. Struct., 2016, 50: 30
doi: 10.1617/s11527-016-0917-2
16 Xu F, Xiao Y F, Wang S G, et al. Numerical model for corrosion rate of steel reinforcement in cracked reinforced concrete structure [J]. Constr. Build. Mater., 2018, 180: 55
doi: 10.1016/j.conbuildmat.2018.05.215
17 Hu J Y, Zhang S S, Chen E, et al. A review on corrosion detection and protection of existing reinforced concrete (RC) structures [J]. Constr. Build. Mater., 2022, 325: 126718
doi: 10.1016/j.conbuildmat.2022.126718
18 Martínez I, Castillo A, Andrade C. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants [J]. J. Nucl. Mater., 2008, 373: 226
doi: 10.1016/j.jnucmat.2007.05.048
19 Sagüés A, Fernandez J. Modeling nuclear containment liner steel liner corrosion [A]. Corrosion 2013 [C]. Orlando, Florida, 2013
20 Li J Q, Xiong J B, Fan Z H, et al. Progress and prospects of macrocell corrosion of steel bars in concrete [J]. J. Chin. Ceram. Soc., 2021, 49: 1631
20 李佳祺, 熊建波, 范志宏 等. 混凝土中钢筋的宏电池腐蚀研究进展与展望 [J]. 硅酸盐学报, 2021, 49: 1631
21 Wang H L, Zhu W H, Qin S F, et al. Numerical simulation of steel corrosion in chloride environment based on random aggregate concrete microstructure model [J]. Constr. Build. Mater., 2022, 331: 127323
doi: 10.1016/j.conbuildmat.2022.127323
22 Wu J Q, Yang J, Zhang R B, et al. Fatigue life estimating for chloride attacked RC beams using the S-N curve combined with mesoscale simulation of chloride ingress [J]. Int. J. Fatigue, 2022, 158: 106751
doi: 10.1016/j.ijfatigue.2022.106751
23 Geng O, Yuan Y S, Zhu H, et al. Experimental study on diffusion coefficient of oxygen in concrete [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2006, 36 (suppl. 2) : 191
23 耿 欧, 袁迎曙, 朱 辉 等. 混凝土氧气扩散系数试验研究 [J]. 东南大学学报 (自然科学版), 2006, 36(): 191
24 Liu J, Liao C Y, Jin H S, et al. Numerical model of the effect of water vapor environment on the chloride transport in concrete [J]. Constr. Build. Mater., 2021, 311: 125330
doi: 10.1016/j.conbuildmat.2021.125330
25 Xia J, Li T, Fang J X, et al. Numerical simulation of steel corrosion in chloride contaminated concrete [J]. Constr. Build. Mater., 2019, 228: 116745
doi: 10.1016/j.conbuildmat.2019.116745
26 Rivera-Corral J O, Fajardo G, Arliguie G, et al. Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: effect of surface finish [J]. Constr. Build. Mater., 2017, 147: 815
doi: 10.1016/j.conbuildmat.2017.04.186
27 Sohail M G, Laurens S, Deby F, et al. Electrochemical corrosion parameters for active and passive reinforcing steel in carbonated and sound concrete [J]. Mater. Corros., 2021, 72: 1854
[1] 朱哲, 蔡景顺, 洪锦祥, 穆松, 周霄骋, 马麒, 陈翠翠. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[2] 陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
[3] 陈梦成 温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[4] 唐咸燕 . 混凝土硫酸杆菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2007, 27(6): 373-378 .
[5] 赵永韬; 刘昌飞; 高晓健 . 电化学方法检测混凝土横梁中高强钢丝的腐蚀[J]. 中国腐蚀与防护学报, 2003, 23(6): 362-366 .