|
|
传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究 |
黄锦阳1, 鲁金涛1( ), 邢瑞华2, 张醒兴1, 黄春林3, 徐雅欣2 |
1.西安热工研究院有限公司 清洁低碳热力发电系统集成及运维国家工程研究中心 西安 710032 2.西北工业大学材料学院 凝固技术国家重点实验室 西安 710072 3.西安科技大学材料科学与工程学院 西安 710054 |
|
Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment |
HUANG Jinyang1, LU Jintao1( ), XING Ruihua2, ZHANG Xingxing1, HUANG Chunlin3, XU Yaxin2 |
1.National Engineering Research Center of Integration and Maintenance of Clean and Low-carbon Thermal Power Generation System, Xi'an Thermal Power Research Institute Co. Ltd., Xi'an 710032, China 2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China 3.College of Material Science and Engineering, Xi'an University of Science and Technology, Xi′an 710054, China |
引用本文:
黄锦阳, 鲁金涛, 邢瑞华, 张醒兴, 黄春林, 徐雅欣. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 365-370.
Jinyang HUANG,
Jintao LU,
Ruihua XING,
Xingxing ZHANG,
Chunlin HUANG,
Yaxin XU.
Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 365-370.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.094
或
https://www.jcscp.org/CN/Y2023/V43/I2/365
|
[1] |
Zhang Z Y, Dong Y J, Li F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation [J]. Engineering, 2016, 2: 112
doi: 10.1016/J.ENG.2016.01.020
|
[2] |
Pan F, Yan Y F, Xu B S, et al. Research on heat treatment of T22 steel high-pressure boiler pipe [J]. Steel Pipe, 2010, 39(1): 60
|
[2] |
(潘峰, 颜云峰, 徐宝顺 等. 高压锅炉管用T22钢的热处理研究 [J]. 钢管, 2010, 39(1): 60)
|
[3] |
Li J, Zhan Y J, Li J, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium [J]. Therm. Power Gener., 2020, 49(11): 120
|
[3] |
(李江, 詹英杰, 李季 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化 [J]. 热力发电, 2020, 49(11): 120)
|
[4] |
Peng W, Chen T, Sun Q, et al. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR [J]. Nucl. Eng. Des., 2017, 316: 218
doi: 10.1016/j.nucengdes.2017.03.014
|
[5] |
Guo L X, Liang D, Wang X J, et al. Graphite dust deposition in high temperature gas cooled reactor [J]. China Powder Sci. Technol., 2019, 25(2): 47
|
[5] |
(郭丽潇, 梁栋, 王秀娟 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积 [J]. 中国粉体技术, 2019, 25(2): 47)
|
[6] |
Verfondern K, Xhonneux A, Nabielek H, et al. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment [J]. Nucl. Eng. Des., 2014, 273: 85
doi: 10.1016/j.nucengdes.2014.01.026
|
[7] |
Kadak A C. The status of the US high-temperature gas reactors [J]. Engineering, 2016, 2: 119
doi: 10.1016/J.ENG.2016.01.026
|
[8] |
Peng Y W, Chen C M, Li X Y, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2017, 328: 420
doi: 10.1016/j.surfcoat.2017.08.058
|
[9] |
Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth [J]. J. Catal., 1997, 169: 240
doi: 10.1006/jcat.1997.1634
|
[10] |
Yin R C. Carburization performance of Incoloy 800HT in CH4/H2 gas mixtures [J]. Mater. Sci. Eng., 2004, 380A: 281
|
[11] |
Grabke H J, Wolf I. Carburization and oxidation [J]. Mater. Sci. Eng., 1987, 87: 23
|
[12] |
Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
|
[13] |
Chang C H, Tsai W T. Carburization behavior under the pits induced by metal dusting in 304L and 347 stainless steels [J]. Mater. Chem. Phys., 2009, 116: 426
doi: 10.1016/j.matchemphys.2009.04.011
|
[14] |
Grabke H J, Krajak R, Paz J C N. On the mechanism of catastrophic carburization: 'metal dusting' [J]. Corros. Sci., 1993, 35: 1141
doi: 10.1016/0010-938X(93)90334-D
|
[15] |
Jakobi D, Gommans R. Typical failures in pyrolysis coils for ethylene cracking [J]. Mater. Corros., 2003, 54: 881
doi: 10.1002/maco.200303731
|
[16] |
McLeod A C, Bishop C M, Stevens K J, et al. Microstructure and carburization detection in HP alloy pyrolysis tubes [J]. Metallogr. Microstruct. Anal., 2015, 4: 273
doi: 10.1007/s13632-015-0210-8
|
[17] |
Li H, Chen W X. High temperature carburization behaviour of Mn-Cr-O spinel oxides with varied concentrations of manganese [J]. Corros. Sci., 2011, 53: 2097
doi: 10.1016/j.corsci.2011.02.021
|
[18] |
Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
doi: 10.1016/0038-1098(85)91021-X
|
[19] |
Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C [J]. Metall. Trans., 1986, 17A: 1065
|
[20] |
Li C S, Yang Y S. Coking and carburizing behaviors of metal materials in high temperature carbon-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 188
|
[20] |
(李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为 [J]. 中国腐蚀与防护学报, 2004, 24: 188)
|
[21] |
Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
|
[21] |
(刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529)
|
[22] |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
doi: 10.1016/j.corsci.2015.07.007
|
[23] |
Rouillard F, Moine G, Tabarant M, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: mechanism of carburization [J]. Oxid. Met., 2012, 77: 57
doi: 10.1007/s11085-011-9272-4
|
[24] |
Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
|
[24] |
(李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327)
|
[25] |
Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
|
[25] |
(焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|