Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 675-680    DOI: 10.11902/1005.4537.2021.191
  研究报告 本期目录 | 过刊浏览 |
Q690高强钢对接焊缝加速腐蚀试验研究
魏欢欢1,2(), 雷天奇3, 郑东东2(), 辛振科4
1.杨凌职业技术学院建筑工程学院 咸阳 712100
2.西安理工大学 西北旱区生态水利国家重点实验室 西安 710048
3.陕西铁路工程职业技术学院道桥与建筑学院 渭南 714099
4.甘肃省水利水电勘测设计研究院有限责任公司 兰州 730000
Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone
WEI Huanhuan1,2(), LEI Tianqi3, ZHENG Dongdong2(), XIN Zhenke4
1.School of Architectural Engineering, Yangling Vocational & Technical College, Xianyang 712100, China
2.State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
3.School of Road, Bridge & Architecture, Shaanxi Rallway Institute, Weinan 714099, China
4.Gansu Institute of Water & Hydropower Engineering Investigation Design and Research, Lanzhou 730000, China
全文: PDF(1965 KB)   HTML
摘要: 

为研究Q690高强钢对接焊缝在海洋浪溅区的腐蚀特性,进行室内加速腐蚀实验,通过对不同周期下的表面宏观与微观腐蚀形貌的观察以及质量损失率、蚀坑尺寸和腐蚀速率等参数的测定,分析了试件损伤程度随腐蚀周期的变化规律。结果表明:随着腐蚀周期增加,金属光泽逐渐变暗,焊缝连接处分布较多锈蚀物,质地较为疏松,局部区域存在剥落现象;当腐蚀100 d后,试件质量损失率为8.46%。根据激光扫描共聚焦显微镜分析结果可知,表面堆积物能够抑制腐蚀沿深度方向延伸,腐蚀过程是由针状点蚀逐渐向坑蚀过渡,焊缝区、热影响区的蚀坑平均深度分别约为311.01和333.24 μm。研究结果对于海洋环境下国产高强钢耐久性评估具有重要意义。

关键词 Q690高强钢对接焊缝海洋浪溅区微观扫描质量损失率耐久性    
Abstract

The corrosion characteristics of butt welds of Q690 high strength steel in the ocean splash zone was studied via laboratory simulation with a desired accelerated corrosion scheme of cyclic immersion in artificial seawater and maintenance in hot and humid chamber, in terms of the macroscopic and microscopic corrosion morphology, mass loss, pit size, and corrosion depth etc., so that to acquire the corrosion regulation of the steel. The results show that as the corrosion cycle increases, the metal luster gradually darkens, more rusts emerge on the weld joints, the formed rust rather loose with pelling off can be seen at local areas. After 100 d of corrosion, the mass loss rate of the steel is 8.46%. The observation results of laser scanning confocal microscope (LSCM) show that surface deposits can inhibit corrosion from extending along the depth direction. The corrosion process gradually transforms from needle-like corrosion spots to corrosion pits, the average depths of pits in the weld zone and heat affected zone are about 311.01 and 333.24 μm, respectively. The research results are of great significance for the durability evaluation of domestic high strength steel in marine environment.

Key wordsQ690 high strength steel    butt weld    ocean splash zone    microscopic scan    mass loss rate    durability
收稿日期: 2021-08-10     
ZTFLH:  TU511.3  
基金资助:国家自然科学基金(51978571);杨凌职业技术学院自然科学基金(ZK21-28)
通讯作者: 魏欢欢,郑东东     E-mail: wh0402@qq.com;2512978427@qq.com
Corresponding author: WEI Huanhuan,ZHENG Dongdong     E-mail: wh0402@qq.com;2512978427@qq.com
作者简介: 魏欢欢,男,1996年生,硕士,助教

引用本文:

魏欢欢, 雷天奇, 郑东东, 辛振科. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
Huanhuan WEI, Tianqi LEI, Dongdong ZHENG, Zhenke XIN. Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 675-680.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.191      或      https://www.jcscp.org/CN/Y2022/V42/I4/675

图1  试件尺寸
图2  腐蚀后样品的LSCM分析区域
图3  经不同周期腐蚀后试件的表面形貌图
Corrosion time / dSpecimen codem0 / gm1 / gm0-m1/ gηs%ηs average value / %
20CT20-11309.581294.5215.061.151.80
CT20-21324.791292.4332.362.44
CT20-31321.211297.7623.451.77
CT20-41318.811294.7024.111.83
40CT40-11313.181271.0242.163.213.62
CT40-21314.171267.1647.013.58
CT40-31321.261274.9646.303.50
CT40-41323.571268.4155.164.17
60CT60-11310.371244.0366.345.065.48
CT60-21324.551243.6080.956.11
CT60-31321.341248.0673.285.55
CT60-41313.531245.5467.995.18
80CT80-11311.021229.3881.636.236.81
CT80-21320.491229.3291.176.90
CT80-31320.251227.3192.947.04
CT80-41319.601226.3293.287.07
100CT100-11312.551209.86102.697.828.46
CT100-21325.451207.46117.998.90
CT100-31318.991210.32108.678.24
CT100-41323.101205.46117.648.89
表1  质量损失率计算结果
图4  腐蚀周期与质量损失率的关系
图5  经不同周期腐蚀后试件表面LSCM扫描形貌
Specimen codeAverage depth of WZ / μmAverage depth of HAZ / μmAverage width of WZ / μmAverage width of HAZ / μmAspect ratio of WZAspect ratio of HAZ
CT20116.443128.2361765.1431951.2420.0660.066
CT40140.367163.1542279.4972512.0250.0620.065
CT60172.580186.1632996.2322944.3480.0580.063
CT80232.322251.9973966.2145084.6750.0590.050
CT100311.010333.2445809.2836985.5130.0540.048
表2  扫描区域腐蚀深宽比
Specimen codeηs / %WZHAZ
Average depth / μmξ / mm·a-1Average depth / μmξ / mm·a-1
CT201.80116.4432.16128.2362.34
CT403.62140.3671.28163.1541.49
CT605.48172.5801.05186.1631.13
CT806.81232.3221.06251.9971.15
CT1008.46311.0101.14333.2441.22
表3  焊缝区和热影响区的平均腐蚀速率
图6  蚀坑尺寸与腐蚀时间关系
图7  腐蚀试件t-ηs-ξ关系曲面
1 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
1 刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
2 Guo H C, Wei H H, Kou J L, et al. Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping [J]. Appl. Ocean Res., 2021, 111: 102677
doi: 10.1016/j.apor.2021.102677
3 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
doi: 10.1016/j.jcsr.2021.106801
4 Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components [J]. Int. J. Fatigue, 2019, 126: 90
doi: 10.1016/j.ijfatigue.2019.04.041
5 Guo Q, Liu J H, Yu M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 139
6 Zhang S Y, Luo D, Yang Y, et al. Corrosion behaviours of 30CrMnSiA high-strength steel in industrial and marine atmosphere environments [J]. Equip. Environ. Eng., 2017, 14(5): 25
6 张世艳, 罗丹, 杨瑛 等. 30CrMnSiA高强钢在工业和海洋大气环境中的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(5): 25
7 Guo H, Cheng X D, Zhang H X, et al. Corrosion behavior of welded joint of low alloy high strength steel in 3.5%NaCl solution [J]. Hot Work. Technol., 2021, 50(13): 49
7 郭晗, 程旭东, 张慧霞 等. 低合金高强钢焊接接头在3.5%NaCl溶液中的腐蚀行为 [J]. 热加工工艺, 2021, 50(13): 49
8 Liu Y, Yang W, Shi C Y. Alternate immersion corrosion of base metal and welded joint of N800CF high strength steel [J]. Hot Work. Technol., 2021, 50(1): 142
8 刘洋, 杨蔚, 史春元. N800CF高强钢母材与焊接接头的周浸腐蚀行为 [J]. 热加工工艺, 2021, 50(1): 142
9 Gong K, Wu M, Liu G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments [J]. Constr. Build. Mater., 2020, 235: 117440
doi: 10.1016/j.conbuildmat.2019.117440
10 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
10 李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
11 Jiang J, Wang J Y, Jin W J, et al. Research progress on corrosion and anti-corrosion technology of ribbed steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 439
11 姜军, 王军阳, 金武俊 等. 带肋钢腐蚀及其防腐蚀技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 439
12 Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Code for welding of steel structures [S]. Beijing: China Building Industry Press, 2012
12 中华人民共和国住房和城乡建设部. 钢结构焊接规范 [S]. 北京: 中国建筑工业出版社, 2012
13 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
13 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
14 Ye J H, Shen H Q, Xue S D. Simplified analytical method of mechanical property degradation for steel members with pitting corrosion [J]. J. Harbin Inst. Technol., 2016, 48(12): 70
14 叶继红, 申会谦, 薛素铎. 点蚀孔腐蚀钢构件力学性能劣化简化分析方法 [J]. 哈尔滨工业大学学报, 2016, 48(12): 70
15 Wei H H. Research on fatigue performance of butt welds of corroded Q690 high strength steel in humid and hot immersion environment [D]. Xi'an: Xi'an University of Technology, 2021
15 魏欢欢. 湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究 [D]. 西安: 西安理工大学, 2021
16 Hou B R. My passion for the corrosion protection of ocean splash zone [J]. Mar. Sci., 2020, 44(7): 179
16 侯保荣. 我的海洋浪花飞溅区腐蚀情缘 [J]. 海洋科学, 2020, 44(7): 179
[1] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[2] 王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[3] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[4] 毛江鸿,金伟良,张华,许晨,夏晋. 海砂混凝土建筑的耐久性提升技术及应用研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[5] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[6] 唐咸燕 . 混凝土硫酸杆菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2007, 27(6): 373-378 .