Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 338-344    DOI: 10.11902/1005.4537.2021.150
  研究报告 本期目录 | 过刊浏览 |
X60管线钢在模拟潮差区初期腐蚀行为研究
李平()
国家管网集团东部原油储运有限公司 徐州 221000
Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone
LI Ping()
PipeChina Network Corporation Eastern Oil Storage and Transportation Co. Ltd. , Xuzhou 221000, China
全文: PDF(2623 KB)   HTML
摘要: 

在模拟潮差实验槽内,通过腐蚀形貌观察、腐蚀产物分析,以及原位开路电位监测,研究了X60管线钢在不同监测位置随潮水涨落变化的腐蚀行为与规律。结果表明,管线钢在潮差区内不同位置的腐蚀行为各异,在中、低潮区的腐蚀速度要快于最高潮区及最低潮区的腐蚀速度;随着潮位的降低,开路电位不断降低;最高潮区阴极过程主要受氧还原控制,中、低潮区涨潮时阴极过程受锈还原控制,落潮时受氧还原控制。最低潮区的电位变化过程与潮水涨落无关。

关键词 X60管线钢室内模拟海洋潮差腐蚀开路电位干湿交替    
Abstract

In an experiment tank of simulated tidal zone, the variation of corrosion behavior of X60 pipeline steel with the tidal water fluctuations at different monitoring positions was characterized by means of corrosion morphology observation, corrosion product analysis, and in-situ open-circuit potential monitoring. The results show that the corrosion behavior of pipeline steel is different at different positions in tidal zone. The corrosion rate in the middle and low tide areas is faster than that in the highest and lowest tide areas. With the decrease of tidal level, the open circuit potential decreases continuously. The cathodic process in the highest tide zone is mainly controlled by oxygen reduction. The cathodic process in the middle and low tide zone is controlled by rust reduction during high tide, and it is controlled by oxygen reduction during ebb tide. The change process of open-circuit potential in the lowest tide zone has nothing to do with tide fluctuation.

Key wordsX60 pipeline steel    laboratory simulation    tidal corrosion    open-circuit potential    dry wet alternation
收稿日期: 2021-06-29     
ZTFLH:  TG172.5  
通讯作者: 李平     E-mail: 784067690@qq.com
Corresponding author: LI Ping     E-mail: 784067690@qq.com
作者简介: 李平,男,1974年,博士,高级工程师

引用本文:

李平. X60管线钢在模拟潮差区初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 338-344.
Ping LI. Research on Initial Corrosion Behavior of X60 Pipeline Steel in Simulated Tidal Zone. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 338-344.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.150      或      https://www.jcscp.org/CN/Y2022/V42/I2/338

图1  开路电位监测示意图
图2  X60管线钢不同测试位置的微观腐蚀形貌
图3  不同测试位置的XRD结果
图4  潮差腐蚀30 d后的腐蚀速度变化结果
图5  不同监测位置的开路电位随腐蚀天数的变化曲线
图6  不同监测位置第30 d开路电位与潮位对应的变化曲线
1 Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil Gas, 2017, 29(5): 157
1 王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157
2 Xia L T, Wang L C, Huang G Q. Present status of research on sea-water corrosion of metal in China [J]. China Found. Mach. Technol., 2002, (6): 1
2 夏兰廷, 王录才, 黄桂桥. 我国金属材料的海水腐蚀研究现状 [J]. 中国铸造装备与技术, 2002, (6): 1
3 Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
3 王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
4 Gao Y, Sun H Y, Sun L J. Initial corrosion behavior of X80 pipeline steel in the Yellow Sea [J]. Corros. Prot., 2018, 39: 327
4 高杨, 孙虎元, 孙立娟. X80管线钢在黄海海水中的初期腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 327
5 Liao K X, Huang L J, Wang D D, et al. Corrosion behavior of X65 pipeline steel in simulated seawater environment [J]. Corros. Prot., 2017, 38: 856
5 廖柯熹, 黄琳钧, 王丹丹等. X65管线钢在模拟海水环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 856
6 Cheng H L, Liu D J. Corrosion of A3, 20# and X70 steels in simulated flowing seawater [J]. Corros. Prot., 2012, 33: 212
6 程浩力, 刘德俊. A3、20#和X70钢室内模拟流动海水腐蚀试验 [J]. 腐蚀与防护, 2012, 33: 212
7 Liu Z J, Wang W, Wang J, et al. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method [J]. Corros. Sci., 2014, 80: 523
8 Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater [J]. Corros. Sci., 2009, 51: 2291
9 Chen Y L, Zhang W, Wang W, et al. Evaluation of water-line area corrosion for Q235 steel by WBE technique [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 451
9 陈亚林, 张伟, 王伟等. WBE技术研究水线区Q235碳钢腐蚀 [J]. 中国腐蚀与防护学报, 2014, 34: 451
10 Hu J Z, Cheng X Q, Li X G, et al. Evaluation of sea-air interface area corrosion for carbon steel by WBE Technique and LP technique [J]. Corros. Prot., 2015, 36: 1014
10 胡杰珍, 程学群, 李晓刚等. 阵列电极 (WBE) 联合线性极化技术 (LP) 研究海水-大气界面区碳钢的腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 1014
11 Tan Y J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion [J]. Corros. Sci., 2001, 43: 1931
12 Jeffrey R, Melchers R E. Effect of vertical length on corrosion of steel in the tidal zone [J]. Corrosion, 2009, 65: 695
13 Möller H, Boshoff E T, Froneman H. The corrosion behaviour of a low carbon steel in natural and synthetic seawaters [J]. J. Southern Afr. Inst. Min. Metall., 2006, 106: 585
14 Hou B R. Marine Corrosion and Protection [M]. Beijing: Science Press, 1997
14 侯宝荣. 海洋腐蚀与防护 [M]. 北京: 科学出版社, 1997
15 La Que F L. Corrosion testing, Edgar Marburg lecture [J]. Proc. ASTM, 1951, 51: 495
16 Schumacher M. Seawater Corrosion Handbook [M]. Park Ridge: Noyes Data Corp, 1979
17 Humble H A. The cathodic protection of steel piling in sea water [J]. Corrosion, 1949, 5: 292
18 Zhang M Y. Results of long-scale hanging of low alloy steel in different sea areas [A]. Proceedings of1979 Symposium on Corrosion and Protection (Seawater, Industrial Water and Biological parts) [M]. Beijing: Science Press, 1982: 26
18 张明洋. 低合金钢在不同海区长尺挂片结果 [A]. 1979年腐蚀与防护学术报告会议论文集 (海水、工业水和生物部分) [M]. 北京: 科学出版社, 1982: 26
19 Hou B R. Study on corrosion test method of marine structural steel [J]. Stud. Mar. Sin., 1981, 18: 87
19 侯保荣. 海洋结构钢腐蚀试验方法的研究 [J]. 海洋科学集刊, 1981, 18: 87
20 Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels [J]. Corros. Sci., 2003, 45: 2609
21 Melchers R E. Modeling of marine immersion corrosion for mild and low-alloy steels-Part 1: Phenomenological model [J]. Corrosion, 2003, 59: 319
22 Huang G Q. Study of the corrosion potential of metals in seawater [J]. Corros. Prot., 2000, 21: 8
22 黄桂桥. 金属在海水中的腐蚀电位研究 [J]. 腐蚀与防护, 2000, 21: 8
23 Luo Y N, Song S Z, Jin W X, et al. In field electrochemical detections and corrosion behavior of carbon steel samples [J]. J. Chem. Ind. Eng., 2008, 59: 2864
23 雒娅楠, 宋诗哲, 金威贤等. 碳钢试片实海电化学检测与腐蚀规律的相关性 [J]. 化工学报, 2008, 59: 2864
24 Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
24 穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420
25 Yang H Y, Huang G Q, Han B, et al. Corrosion behavior of electrically connected carbon steel samples exposed to tide zone and immersion zone for 30 d [J]. Corros. Prot., 2020, 41(11): 65
25 杨海洋, 黄桂桥, 韩冰等. 潮差区-全浸区电联接碳钢试样暴露30 d的腐蚀行为 [J]. 腐蚀与防护, 2020, 41(11): 65
26 Matsushima R, translated by Jing Y K. Low-alloy Corrosion Resistant a History of Development, Application and Research [M]. Beijing: Metallurgical Industry Press, 2004: 230
26 松岛岩著, 靳裕康译. 低合金耐蚀钢: 开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004: 230
27 Misawa T. The thermodynamic consideration for Fe-H2O system at 25 ℃ [J]. Corros. Sci., 1973, 13: 659
28 Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
29 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
30 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
31 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
32 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique [J]. Corros. Sci., 1990, 30: 681
33 Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
34 Mu X, Wei J, Dong J H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043
35 Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
36 Wang G, Chen J M. The cathodic behavior of iron rusts and its influence on corrosion and prevention [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 258
36 王戈, 陈俊明. 铁锈的阴极行为及其对腐蚀与防护的影响 [J]. 中国腐蚀与防护学报, 1985, 5: 258
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[3] 王雪莹, 王佳, 刘在健, 丁健, 王海杰. 金属罐内涂层破损区气相定位检测局部电化学探头技术的研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.
[4] 梁虎, 杜敏, 张有慧. 铝合金牺牲阳极极化性能研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 153-159.
[5] 原徐杰, 张俊喜, 张世明, 谈天. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 395-399.
[6] 张弦,杨淼,汪新,林安,甘复兴. 低碳钢在H2S溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 465-468.
[7] 王雷, 董俊华, 柯伟. 加载与循环干湿条件作用下对MnCu耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
[8] 张际标; 王佳; 王燕华; 姜应律 . 微液滴现象与大气腐蚀—— Ⅲ. 干湿交替下微液滴的扩展行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 151-154 .
[9] 王伟; 王佳; 徐海波; 李相波 . 海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响[J]. 中国腐蚀与防护学报, 2006, 26(2): 65-69 .
[10] 王佳; 李相波; 王伟 . 海水环境微生物附着对钝性金属开路电位的影响[J]. 中国腐蚀与防护学报, 2004, 24(5): 262-266 .