|
|
X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测 |
朱延山, 张继明( ), 武凤娟, 曲锦波 |
江苏省 (沙钢) 钢铁研究院 张家港 215625 |
|
Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel |
ZHU Yanshan, ZHANG Jiming( ), WU Fengjuan, QU Jinbo |
Institute of Research of Iron and Steel (IRIS), Sha-steel, Zhangjiagang 215625, China |
引用本文:
朱延山, 张继明, 武凤娟, 曲锦波. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
Yanshan ZHU,
Jiming ZHANG,
Fengjuan WU,
Jinbo QU.
Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 169-174.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.015
或
https://www.jcscp.org/CN/Y2022/V42/I1/169
|
1 |
Yang W, Cao J, Wang X H, et al. Investigation on non-metallic inclusions in LCAK steel produced by BOF-LF-FTSC production route [J]. J. Iron Steel. Res. Int., 2011, 18: 6
|
2 |
Xue Z L, Li Z B, Zhang J W. Evaluation method for steel cleanliness [J]. J. Iron Steel. Res., 2003, 15(1): 62
|
2 |
薛正良, 李正邦, 张家雯. 钢的纯净度的评价方法 [J]. 钢铁研究学报, 2003, 15(1): 62
|
3 |
Yue Q, Chen H H, Yao C H, et al. Review of collision and growth on non-metallic inclusion in steel [J]. J. Iron Steel. Res., 2012, 24(9): 1
|
3 |
岳强, 陈怀昊, 姚成虎等. 钢液中非金属夹杂物碰撞、长大的研究进展 [J]. 钢铁研究学报, 2012, 24(9): 1
|
4 |
Cai S Q, Teng M, Li J F, et al. Effect of non-metallic inclusions on cutting character in Ca and Ca-S free machining steels [J]. J. Iron Steel. Res, 2000, 12(2): 54
|
4 |
蔡淑卿, 滕梅, 李吉夫等. 非金属夹杂物对钙系与钙硫系易切削钢切削性能的影响 [J]. 钢铁研究学报, 2000, 12(2): 54
|
5 |
Zhang C, Xia Z X, Yang Z G, et al. Influence of prior austenite deformation and non-metallic inclusions on ferrite Formation in low-carbon steels [J]. J. Iron Steel. Res. Int., 2010, 17: 36
|
6 |
da Costa e Silva A L V. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications [J]. J. Mater. Res. Technol., 2019, 8: 2408
|
7 |
Henschel S, Dudczig S, Krüger L, et al. Effect of non-metallic inclusions and shrinkage cavities on the dynamic fracture toughness of a high-strength G42CrMo4 cast steel [J]. Procedia Struct. Integrity, 2016, 2: 358
|
8 |
Zhang J M, Ji L K, Bao D J, et al. Gigacycle fatigue behavior of 1800 MPa grade high strength spring steel for automobile lightweight [J]. J. Iron Steel. Res. Int., 2014, 21: 614
|
9 |
Zhang J M, Yang Z G, Li S X, et al. Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiCrV6 and 54SiCr6 [J]. Acta Metall. Sin., 2006, 42: 259
|
9 |
张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为 [J]. 金属学报, 2006, 42: 259
|
10 |
Yang Z G, Zhang J M, LI S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
|
11 |
Zhang J M. Very high cycle fatigue behavior of X80 acicular ferrite line pipe [J]. Trans. Mater. Heat Treat., 2020, 41(4): 144
|
11 |
张继明. X80针状铁素体管线管的超高周疲劳行为 [J]. 材料热处理学报, 2020, 41(4): 144
|
12 |
Atkinson H V, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods [J]. Prog. Mater. Sci., 2003, 48: 457
|
13 |
Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35: 8014
|
14 |
Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
|
15 |
Zhang J M, Zhu Y S, Shao C J, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. J. Chin. Electron Microsc. Soc., 2020, 39: 261
|
15 |
张继明, 朱延山, 邵春娟等. X65抗酸管线钢氢致开裂的晶体学表征 [J]. 电子显微学报, 2020, 39: 261
|
16 |
Roffey P, Davies E H. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline [J]. Eng. Fail. Anal., 2014, 44: 148
|
17 |
Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size [J]. Int. J. Fatigue, 1989, 11: 299
|
18 |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
|
19 |
Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
|
20 |
Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
|
21 |
Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel [J]. Mater. Sci. Eng., 2005, 394A: 126
|
22 |
Kholodnyi A A, Matrosov Y I, Matrosov M Y, et al. Effect of carbon and manganese on low-carbon pipe steel hydrogen-induced cracking resistance [J]. Metallurgist, 2016, 60: 54
|
23 |
Nayak S S, Misra R D K, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel [J]. Mater. Sci. Eng., 2008, 494A: 456
|
24 |
Domizzi G, Anteri G, Ovejero-Garcı́a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
|
25 |
Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping [J]. Int. J. Hydrogen Energy, 2020, 45: 12616
|
26 |
Du X S, Cao W B, Wang C D, et al. Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel [J]. Mater. Sci. Eng., 2015, 642A: 181
|
27 |
Koseki T, Kato H, Tsutsumi M, et al. Ferrite transformation from oxide-steel interface in HAZ-simulated C-Mn steel [J]. Int. J. Mater. Res., 2008, 99: 347
|
28 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 6
|
28 |
褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀—基础部分 [M]. 北京: 科学出版社, 2013: 6
|
29 |
Sezgin J G, Bosch C, Montouchet A, et al. Modelling of hydrogen induced pressurization of internal cavities [J]. Int. J. Hydrogen Energy, 2017, 42: 15403
|
30 |
Chen L, Xiong X L, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance [J]. Corros. Sci., 2020, 166: 108428
|
31 |
Tao X, Lv G C, Kou J W, et al. Synchrotron X-ray Laue diffraction study of hydrogen-induced blisters on iron grain boundaries [J]. Scr. Mater., 2019, 169: 82
|
32 |
Fu L, Fang H Y. Formation criterion of hydrogen-induced cracking in steel based on fracture mechanics [J]. Metals, 2018, 8: 940
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|