Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 169-174    DOI: 10.11902/1005.4537.2021.015
  研究报告 本期目录 | 过刊浏览 |
X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测
朱延山, 张继明(), 武凤娟, 曲锦波
江苏省 (沙钢) 钢铁研究院 张家港 215625
Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel
ZHU Yanshan, ZHANG Jiming(), WU Fengjuan, QU Jinbo
Institute of Research of Iron and Steel (IRIS), Sha-steel, Zhangjiagang 215625, China
全文: PDF(6141 KB)   HTML
摘要: 

采用金相和扫描电镜分析方法,对X65抗酸管线钢中的大尺寸非金属夹杂物及夹杂物诱发的氢致开裂 (HIC) 裂纹进行了研究,并采用极值统计方法对不同体积管线钢中大尺寸非金属夹杂物及其可能诱发的HIC裂纹尺寸进行了预测。结果表明,X65管线钢中大尺寸非金属夹杂物随着预测体积的增加而增大,预测的最大夹杂物尺寸与实际观察结果相吻合;而通过最大夹杂物尺寸预测的HIC裂纹长度与实验检测裂纹长度一致。

关键词 抗酸管线钢非金属夹杂物HIC裂纹极值统计    
Abstract

Large non-metallic inclusions and their effect on the hydrogen induced cracking behavior (HIC) of the X65 acid-resistant pipeline steel were investigated by means of metallography and scanning electron microscopy (SEM). While the maximum size of non-metallic inclusions in the steels of different volume was predicted by extreme value statistics (SEV). According to the predicted inclusion of large size, the possible hydrogen induced cracks (HICs) evoked by the large inclusions were estimated for the X65 pipeline steel. The results show that the large non-metallic inclusions in X65 pipeline steel increase with the increase of the steel volume, and the predicted maximum inclusion size is consistent with the results of metallographic observation. The estimated size of HICs evoked by the inclusion of predicted maximum size is consistent with the crack length detected by HIC test of X65 pipeline steel.

Key wordsanti-resistant pipeline steel    non-metallic inclusion    hydrogen induced crack    statistics of extreme value
收稿日期: 2021-01-18     
ZTFLH:  TG172  
基金资助:江苏省姑苏国际合作项目和张家港市创新领军人才项目
通讯作者: 张继明     E-mail: Jiming_zhang@126.com
Corresponding author: ZHANG Jiming     E-mail: Jiming_zhang@126.com
作者简介: 张继明,E-mail:Jiming_zhang@126.com,研究方向为高性能管线钢的力学行为及显微结构表征
朱延山,男,1977年生,硕士,高级工程师

引用本文:

朱延山, 张继明, 武凤娟, 曲锦波. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
Yanshan ZHU, Jiming ZHANG, Fengjuan WU, Jinbo QU. Analysis and Prediction of Nonmetallic Inclusions and Their Effect on Hydrogen Induced Cracking Behavior of X65 Acid-resistant Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 169-174.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.015      或      https://www.jcscp.org/CN/Y2022/V42/I1/169

图1  X65钢中12个金相检测面获得的最大夹杂物的尺寸及其形貌
图2  HIC实验后12个截面上最大HIC裂纹尺寸与形貌以及对应的非金属夹杂物
No.LHIC / μmLin / μmLHIC / Lin
115.57.52.01
216.011.81.36
328.017.01.63
442.026.01.62
547.133.51.41
650.835.01.45
755.237.01.49
866.736.01.83
972.027.02.67
1078.340.01.96
1190.046.01.96
1296.041.72.30
表1  HIC实验后12个试样截面上最大尺寸HIC裂纹及相应的非金属夹杂物
图3  不同体积X65管线钢中最大夹杂物尺寸以及HIC裂纹尺寸的预测与实际测量值对比
图4  采用UT方法获得的最大HIC裂纹形貌
图5  非金属夹杂物诱发HIC裂纹开裂示意图[31,32]
1 Yang W, Cao J, Wang X H, et al. Investigation on non-metallic inclusions in LCAK steel produced by BOF-LF-FTSC production route [J]. J. Iron Steel. Res. Int., 2011, 18: 6
2 Xue Z L, Li Z B, Zhang J W. Evaluation method for steel cleanliness [J]. J. Iron Steel. Res., 2003, 15(1): 62
2 薛正良, 李正邦, 张家雯. 钢的纯净度的评价方法 [J]. 钢铁研究学报, 2003, 15(1): 62
3 Yue Q, Chen H H, Yao C H, et al. Review of collision and growth on non-metallic inclusion in steel [J]. J. Iron Steel. Res., 2012, 24(9): 1
3 岳强, 陈怀昊, 姚成虎等. 钢液中非金属夹杂物碰撞、长大的研究进展 [J]. 钢铁研究学报, 2012, 24(9): 1
4 Cai S Q, Teng M, Li J F, et al. Effect of non-metallic inclusions on cutting character in Ca and Ca-S free machining steels [J]. J. Iron Steel. Res, 2000, 12(2): 54
4 蔡淑卿, 滕梅, 李吉夫等. 非金属夹杂物对钙系与钙硫系易切削钢切削性能的影响 [J]. 钢铁研究学报, 2000, 12(2): 54
5 Zhang C, Xia Z X, Yang Z G, et al. Influence of prior austenite deformation and non-metallic inclusions on ferrite Formation in low-carbon steels [J]. J. Iron Steel. Res. Int., 2010, 17: 36
6 da Costa e Silva A L V. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications [J]. J. Mater. Res. Technol., 2019, 8: 2408
7 Henschel S, Dudczig S, Krüger L, et al. Effect of non-metallic inclusions and shrinkage cavities on the dynamic fracture toughness of a high-strength G42CrMo4 cast steel [J]. Procedia Struct. Integrity, 2016, 2: 358
8 Zhang J M, Ji L K, Bao D J, et al. Gigacycle fatigue behavior of 1800 MPa grade high strength spring steel for automobile lightweight [J]. J. Iron Steel. Res. Int., 2014, 21: 614
9 Zhang J M, Yang Z G, Li S X, et al. Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiCrV6 and 54SiCr6 [J]. Acta Metall. Sin., 2006, 42: 259
9 张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为 [J]. 金属学报, 2006, 42: 259
10 Yang Z G, Zhang J M, LI S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
11 Zhang J M. Very high cycle fatigue behavior of X80 acicular ferrite line pipe [J]. Trans. Mater. Heat Treat., 2020, 41(4): 144
11 张继明. X80针状铁素体管线管的超高周疲劳行为 [J]. 材料热处理学报, 2020, 41(4): 144
12 Atkinson H V, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods [J]. Prog. Mater. Sci., 2003, 48: 457
13 Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35: 8014
14 Mohtadi-Bonab M A, Eskandari M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel [J]. Eng. Fail. Anal., 2017, 79: 351
15 Zhang J M, Zhu Y S, Shao C J, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. J. Chin. Electron Microsc. Soc., 2020, 39: 261
15 张继明, 朱延山, 邵春娟等. X65抗酸管线钢氢致开裂的晶体学表征 [J]. 电子显微学报, 2020, 39: 261
16 Roffey P, Davies E H. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline [J]. Eng. Fail. Anal., 2014, 44: 148
17 Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size [J]. Int. J. Fatigue, 1989, 11: 299
18 Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
19 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
20 Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
21 Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel [J]. Mater. Sci. Eng., 2005, 394A: 126
22 Kholodnyi A A, Matrosov Y I, Matrosov M Y, et al. Effect of carbon and manganese on low-carbon pipe steel hydrogen-induced cracking resistance [J]. Metallurgist, 2016, 60: 54
23 Nayak S S, Misra R D K, Hartmann J, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel [J]. Mater. Sci. Eng., 2008, 494A: 456
24 Domizzi G, Anteri G, Ovejero-Garcı́a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci., 2001, 43: 325
25 Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping [J]. Int. J. Hydrogen Energy, 2020, 45: 12616
26 Du X S, Cao W B, Wang C D, et al. Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel [J]. Mater. Sci. Eng., 2015, 642A: 181
27 Koseki T, Kato H, Tsutsumi M, et al. Ferrite transformation from oxide-steel interface in HAZ-simulated C-Mn steel [J]. Int. J. Mater. Res., 2008, 99: 347
28 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 6
28 褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀—基础部分 [M]. 北京: 科学出版社, 2013: 6
29 Sezgin J G, Bosch C, Montouchet A, et al. Modelling of hydrogen induced pressurization of internal cavities [J]. Int. J. Hydrogen Energy, 2017, 42: 15403
30 Chen L, Xiong X L, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance [J]. Corros. Sci., 2020, 166: 108428
31 Tao X, Lv G C, Kou J W, et al. Synchrotron X-ray Laue diffraction study of hydrogen-induced blisters on iron grain boundaries [J]. Scr. Mater., 2019, 169: 82
32 Fu L, Fang H Y. Formation criterion of hydrogen-induced cracking in steel based on fracture mechanics [J]. Metals, 2018, 8: 940
[1] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.