Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 732-736    DOI: 10.11902/1005.4537.2020.199
  研究报告 本期目录 | 过刊浏览 |
水化响应纳米材料对钢筋混凝土整体耐蚀性能影响
朱哲, 蔡景顺(), 洪锦祥(), 穆松, 周霄骋, 马麒, 陈翠翠
江苏苏博特新材料股份有限公司 高性能土木工程材料国家重点实验室 南京 211103
Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete
ZHU Zhe, CAI Jingshun(), HONG Jinxiang(), MU Song, ZHOU Xiaocheng, MA Qi, CHEN Cuicui
State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. , Ltd. , Nanjing 211103, China
全文: PDF(1309 KB)   HTML
摘要: 

研究了新型水化响应纳米材料作为混凝土抗侵蚀抑制剂对混凝土毛细疏水、离子传输、硫酸盐腐蚀以及钢筋阻锈性能的影响。水化响应纳米材料可以在海工低渗透性混凝土基础上进一步降低混凝土吸水率78%,降低氯离子扩散系数44%,硫酸盐耐蚀系数提升41%,同时降低钢筋宏电池累计腐蚀电量90%,实现钢筋混凝土结构整体耐蚀性能的大幅提升。

关键词 混凝土抗侵蚀抑制剂钢筋锈蚀毛细疏水水化响应纳米材料    
Abstract

The effect of new kind of hydration response nanomaterials, as concrete erosion inhibitor, on capillary hydrophobicity, ions transport, sulfate corrosion resistance for concrete and corrosion resistance for the corresponding reinforced steel was investigated. For a low-permeability marine concrete, the addition of hydration response nanomaterials can further reduce its water absorption rate by 78%, chloride ion diffusion coefficient by 44% and sulfate corrosion resistance coefficient by 41%, whilst the electric charge cumulation due to corrosion of the reinforced steel by 90%, thus greatly improving the overall corrosion resistance of reinforced concrete structures.

Key wordsconcrete erosion inhibitor    corrosion of steel    capillary hydrophobic    response of cement hydration    nanomaterial
收稿日期: 2020-10-20     
ZTFLH:  TU503  
基金资助:国家重点研发计划(2017YFB0309904);NSFC-山东联合基金(U1706222);国家自然科学基金(51908254);江苏省自然科学基金(BK20171111);广东省重点领域研发计划(2019B111106002);广东省重点工程研发项目(DG1-T02-2017)
通讯作者: 蔡景顺,洪锦祥     E-mail: caiingshun@gmail.com;hongjinxiang@cnjsjk.cn
Corresponding author: CAI Jingshun,HONG Jinxiang     E-mail: caiingshun@gmail.com;hongjinxiang@cnjsjk.cn
作者简介: 朱哲,男,1985年生,助理工程师

引用本文:

朱哲, 蔡景顺, 洪锦祥, 穆松, 周霄骋, 马麒, 陈翠翠. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
Zhe ZHU, Jingshun CAI, Jinxiang HONG, Song MU, Xiaocheng ZHOU, Qi MA, Cuicui CHEN. Effect of Hydration Response Nanomaterials on Corrosion Resistance of Reinforced Concrete. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 732-736.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.199      或      https://www.jcscp.org/CN/Y2021/V41/I5/732

No.CementMineral powderFlyashSandAggregateWaterSuperplasiticHydration response material
121011011073210981504.8---
221011011073210981404.810
321011011073210981304.820
421011011073210981204.830
521011011073210981104.840
表1  混凝土配合比
Dosage of TIA / kg·m-3Slump mmFlow mmAir content %Apparent density kg·m-3
02205603.0%2421
102205502.2%2455
202255402.3%2441
302255202.2%2458
402105002.0%2463
表2  C40混凝土的工作性能
Dosage of TIA / kg·m-33 d7 d28 d56 d
028.241.058.166.2
1028.541.659.868.2
2028.740.358.068.1
3030.039.558.467.3
4030.138.456.365.1
表3  不同掺量TIA的C40混凝土抗压强度
图1  不同掺量TIA对混凝土吸水率影响
图2  TIA掺量对混凝土抗硫酸盐腐蚀性能影响
图3  TIA 掺量对混凝土中钢筋腐蚀抑制性能影响
1 Mehta K P. Reducing the environmental impact of concrete [J]. Concr. Int., 2001, 23: 61
2 Li Z J, Sun W, Pan J L. New development of contemporary concrete [J]. Mater. China, 2009, 28(11): 1
2 李宗津, 孙伟, 潘金龙. 现代混凝土的研究进展 [J]. 中国材料进展, 2009, 28(11): 1
3 Naik N N, Jupe A C, Stock S R, et al. Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate [J]. Cem. Concr. Res., 2006, 36: 144
4 Li Y F, Liu Y, Du R Q, et al. Effect of steel slag powder on the durability of high performance concrete [J]. Adv. Mater. Res., 2009, 79-82: 175
5 Falade F. Influence of water/cement ratios and mix proportions on workability and characteristic strength of concrete containing laterite fine aggregate [J]. Build. Environ., 1994, 29: 237
6 Khunthongkeaw J, Tangtermsirikul S, Leelawat T. A study on carbonation depth prediction for fly ash concrete [J]. Constr. Build. Mater., 2006, 20: 744
7 Saraswathy V, Karthick S P. A state-of-the-art review on the durability of silica fume-blended concrete-a boon to the construction industry [J]. Corros. Rev., 2013, 31: 123
8 Raki L, Beaudoin J, Alizadeh R, et al. Cement and concrete nanoscience and nanotechnology [J]. Materials, 2010, 3: 918
9 Oltulu M, Şahin R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume [J]. Mater. Sci. Eng., 2011, 528A: 7012
10 Liu J P, Mu S, Cai J S, et al. Preparation and performance evaluation of cement hydration responsive nanomaterial [J]. J. Build. Struct., 2019, 40(1): 181
10 刘加平, 穆松, 蔡景顺等. 水泥水化响应纳米材料的制备及性能评价 [J]. 建筑结构学报, 2019, 40(1): 181
11 Zhang P, Wan J Y, Wang K J, et al. Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review [J]. Constr. Build. Mater., 2017, 148: 648
12 Pacheco-Torgal F, Miraldo S, Ding Y, et al. Targeting HPC with the help of nanoparticles: An overview [J]. Constr. Build. Mater., 2013, 38: 365
13 Falchi L, Zendri E, Müller U, et al. The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars [J]. Cem. Conc. Comp., 2015, 59: 107
14 Wittmann F H, Zhao T, Zhan H, et al. Silicon resins, functional polymers in concrete to establish a reliable chloride barrier [J]. Restor. Build. Monum., 2010, 16: 331
15 Zhu Y G, Kou S C, Poon C S, et al. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete [J]. Cem. Conc. Comp., 2013, 35: 32
16 Coates K C, Mohtar S, Tao B, et al. Can soy methyl esters reduce fluid transport and improve durability of concrete [J]. Transp. Res. Record: J. Transp. Res. Board, 2009, 2113: 22
17 Li W, Wittmann F H, Jiang R, et al. Integral water repellent concrete produced by addition of metal soaps [J]. Restor. Build. Monum., 2012, 18: 41
[1] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[2] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[3] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[4] 蔡新华,徐世,尹世平,何真. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J]. 中国腐蚀与防护学报, 2012, 32(3): 228-234.
[5] 金韬;王昌燧;陈志文;李凡庆. 青铜表面SnO_2保护膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 1997, 17(2): 111-115.