Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 549-554    DOI: 10.11902/1005.4537.2020.143
  研究报告 本期目录 | 过刊浏览 |
α型Ti70合金的吸氢行为研究
王佳1, 刘晓勇1(), 高灵清1,2, 查小琴1,2, 罗先甫1, 张文利1, 张恒坤1
1.中国船舶重工集团公司第七二五研究所 洛阳 471023
2.河南省船舶及海工装备结构材料技术与应用重点实验室 洛阳 471023
Hydrogen Absorption Behavior of Near α Ti70 Alloy
WANG Jia1, LIU Xiaoyong1(), GAO Lingqing1,2, ZHA Xiaoqin1,2, LUO Xianfu1, ZHANG Wenli1, ZHANG Hengkun1
1.Luoyang Ship Material Research Institute, Luoyang 471023, China
2.Henan Key Laboratory of Technology and Application of Structural Materials for Ships and Marine Equipments, Luoyang 471023, China
全文: PDF(8423 KB)   HTML
摘要: 

采用电解充氢的方法对Ti70合金试样充氢,并用气体分析仪和金相显微镜 (OM) 对其氢含量和显微组织进行表征,以探究微观组织、扩散方向以及比表面积对吸氢行为的影响。结果表明:Ti70合金的吸氢能力随β相的连续程度增大而升高,原因在于具有bcc结构的β相提供了更多的四面体间隙,成为H更易扩散的通道;进入试样的H在宏观上呈非均匀分布,含量由试样表面向心部迅速降低,且H沿轧制方向的扩散能力明显大于板厚方向,这是由于沿板厚方向扩散时,拉长的α晶粒成为氢扩散的阻力,而在轧制方向狭长的连续β相更利于H的渗入;随试样比表面积增大,吸H量显著上升,进一步表明H沿表面吸入后难以充分向内扩散,导致单位体积对应的表面积越大吸氢能力越强。

关键词 Ti70合金显微组织扩散方向比表面积吸氢能力    
Abstract

The hydrogen absorption behavior of Ti70 alloy was studied by electrolytic hydrogen charging and then characterized via hydrogen analyzer and metallographic microscope. The relationship between the hydrogen content with the microstructure, diffusion direction and specific surface area of Ti70 alloy was examined. The results show that the increased continuity of β phase strongly facilitates the absorption capacity of Ti70 alloy, whereas, the β phase provides more tetrahedral interstitial sites, becoming the easier diffusion path for H. The distribution of H in the alloy is macroscopically non-uniform. The H content shows a sharp decreasing from the surface to the interior. The diffusion of H along the thickness direction is much more difficult than the rolling direction. This should be attributed to the blocking effects caused by the elongated α phase in the thickness direction and the more continuous β phase along the rolling direction. The H absorption capacity was found to increase with the specific surface area of the alloy sample, which further proved that the absorbed H is not sufficiently diffused in the alloy sample, as a result, the larger the surface area per unit volume, the higher the H absorption capacity.

Key wordsTi70 alloy    microstructure    diffusion direction    specific surface area    hydrogen absorption capacity
收稿日期: 2020-08-04     
ZTFLH:  TG146  
通讯作者: 刘晓勇     E-mail: liuxiaoyong@alumni.sjtu.edu.cn
Corresponding author: LIU Xiaoyong     E-mail: liuxiaoyong@alumni.sjtu.edu.cn
作者简介: 王佳,女,1995年生,硕士生

引用本文:

王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. 近α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
Jia WANG, Xiaoyong LIU, Lingqing GAO, Xiaoqin ZHA, Xianfu LUO, Wenli ZHANG, Hengkun ZHANG. Hydrogen Absorption Behavior of Near α Ti70 Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 549-554.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.143      或      https://www.jcscp.org/CN/Y2021/V41/I4/549

图1  不同温度退火后的试样金相组织
Condition1#2#3#4#
Before charging12151943
After charging1902303201120
表1  充氢前后不同组织Ti70试样的氢含量 (μg/g)
图2  不同位点处氢含量变化示意图
Direction12345678
L980553826251613---
S194241414141318242
表2  不同位点处试样的氢含量 (μg/g)
图3  氢含量随比表面积变化
StructureD0 / cm2·s-1Q / kJ·mol-1D / cm2·s-1
α-Ti, hcp1.8×10-251.51.9×10-11
------2.6×10-10
6×10-264.73.2×10-12
β-Ti, bcc1.95×1027.63.0×10-8
1.58×1021.13.3×10-7
表3  氢在Ti中的扩散系数[13]
图4  四面体间隙在密排六方结构中的分布图及氢原子在体心立方结构中的扩散路径示意图
图5  Ti70合金试样的微观组织示意图
1 Gilbert J L, Mali S A. Medical implant corrosion: Electrochemistry at metallic biomaterial surfaces [A]. Eliaz N. Degradation of Implant Materials [M]. New York: Springer, 2012: 1
2 Chattoraj I. Stress corrosion cracking (SCC) and hydrogen-assisted cracking in titanium alloys [A]. Stress Corrosion Cracking: Theory and Practice [M]. Cambridge: Woodhead Publishing, 2011: 381
3 Chang Y H, Breen A J, Tarzimoghadam Z, et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale [J]. Acta Mater., 2018, 150: 273
4 Xu J J, Yan K, Zhu Z Q, et al. Research on hydrogen brittleness of T225NG Ti-alloy [J]. China Mech. Eng., 2005, 16: 1018
4 徐济进, 严铿, 朱正强等. T225NG钛合金氢脆行为的研究 [J]. 中国机械工程, 2005, 16: 1018
5 Qu G J, Yu D H, Miao Y. Application of titanium and its alloys and hydrogen embrittlement corrosion and protection of titanium [J]. Chlor-Alkali Ind., 1996, (4): 33
5 曲广杰, 于德海, 苗艳. 钛与其合金的应用及钛的氢脆腐蚀与防护 [J]. 氯碱工业, 1996, (4): 33
6 Wang Z C. Hydrogen behavior during welding of titanium and titanium and titanium alloys [J]. Rare Met. Mater. Eng., 1986, (5): 11
6 王者昌. 钛及钛合金焊接时氢的行为 [J]. 稀有金属材料与工程, 1986, (5): 11
7 Lenning G A, Craighead C M, Jaffee R I. Constitution and mechanical properties of titanium-hydrogen alloys [J]. JOM, 1954, 6: 367
8 Kessler H D, Sherman R G, Sullivan J F. Hydrogen affects critical properties in commercial titanium [J]. JOM, 1955, 7: 242
9 Liu S, Wang Y G, Sun S. Effect of microstructure on room-temperature hydrogen absorption behavior of Ti-6Al-4V alloy [J]. Rare Met.Mater. Eng., 2017, 46: 2240
9 刘松, 王寅岗, 孙胜. Ti-6Al-4V钛合金组织对其室温吸氢行为的影响 [J]. 稀有金属材料与工程, 2017, 46: 2240
10 Yan L, Ramamurthy S, Noël J J, et al. Hydrogen absorption into alpha titanium in acidic solutions [J]. Electrochim. Acta, 2006, 52: 1169
11 Tal-Gutelmacher E, Eliezer D. The hydrogen embrittlement of titanium-based alloys [J]. JOM, 2005, 57(9): 46
12 He L. Review of corrosion protection and bio-fouling prevention for titanium alloy pipes [J]. Dev. Appl. Mater., 2017, 32(3): 121
12 何磊. 钛合金海水管路腐蚀与污损防护研究进展 [J]. 材料开发与应用, 2017, 32(3): 121
13 Chu W Y, Qiao L J, Li J X, et al. Hydogen Embrittlement and Stress Corrosion: A Typical System [M]. Beijing: Science Press, 2013: 966
13 褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀: 典型体系 [M]. 北京: 科学出版社, 2013: 966
14 Tal-Gutelmacher E, Eliezer D. Hydrogen-assisted degradation of titanium based alloys [J]. Mater. Trans., 2004, 45: 1594
15 He X, Shen B L, Cao J L, et al. Effects of hydrogen on strength and plasticity of two types of new titanium alloys [J]. Rare Met. Mater. Eng., 2003, 32: 390
15 何晓, 沈保罗, 曹建玲等. 氢对两种新型钛合金强度和塑性的影响 [J]. 稀有金属材料与工程, 2003, 32: 390
16 Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589
17 Hood G M. Diffusion in α-Zr, HCP and open metals [J]. Defect Diffus. Forum, 1993, 95-98: 755
18 Mishin Y, Farkas D. Monte Carlo simulation of correlation effects in a random bcc alloy [J]. Philos. Mag., 1997, 75A: 201
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[3] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[4] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[5] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[6] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[7] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[8] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[9] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[10] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[11] 米丰毅,王向东,汪兵,陈小平,彭云. 显微组织对低碳钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395.
[12] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[13] 陈美玲 刘元栋 杨莉 杨军 高宏. 改性纳米SiC粉体强化铸造奥氏体不锈钢耐点蚀性能的研究[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.
[14] 贾瑞灵; 严川伟; 王福会 . 不同铝添加量对镁合金显微组织及大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(5): 269-273 .
[15] 汪淑英; 李具仓; 赵爱民 . 含铬高硅铁基合金组织和性能的研究[J]. 中国腐蚀与防护学报, 2007, 27(5): 292-295 .