|
|
新型复合缓蚀剂对青铜文物的防腐蚀研究 |
周浩1, 王胜利2, 刘雪峰2, 尤世界2( ) |
1.上海博物馆文物保护科技中心 上海 200231 2.哈尔滨工业大学环境学院 城市水资源与水环境国家重点实验室 哈尔滨 150090 |
|
Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics |
ZHOU Hao1, WANG Shengli2, LIU Xuefeng2, YOU Shijie2( ) |
1.Conservation Center, Shanghai Museum, Shanghai 200231, China 2.State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China |
引用本文:
周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
Hao ZHOU,
Shengli WANG,
Xuefeng LIU,
Shijie YOU.
Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 517-522.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.055
或
https://www.jcscp.org/CN/Y2021/V41/I4/517
|
1 |
Wang Z C, Li Y, Jiang X D, et al. Research progress on ancient bronze corrosion in different environments and using different conservation techniques: A review [J]. MRS Adv., 2017, 2: 2033
|
2 |
Shamnamol G K, Sreelakshmi K P, Ajith G, et al. Effective utilization of drugs as green corrosion inhibitor-a review [J]. AIP Conf. Proc., 2020, 2225: 070006
|
3 |
Verma C, Verma D K, Ebenso E E, et al. Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: an overview [J]. Heteroat. Chem., 2018, 29: e21437
|
4 |
Liu L, Lu S, Wu Y Q, et al. Corrosion inhibition behavior of four benzimidazole derivatives and benzotriazole on copper surface [J]. Anti-Corros. Methods Mater., 2020, 67: 565
|
5 |
Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
|
5 |
吕祥鸿, 张晔, 闫亚丽等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
|
6 |
Chugh B, Singh A K, Thakur S, et al. An exploration about the interaction of mild steel with hydrochloric acid in the presence of N-(Benzo [d]thiazole-2-yl)-1-phenylethan-1-imines [J]. J. Phys. Chem., 2019, 123C: 22897
|
7 |
Lu S, Ren Z B, Xie J Y, et al. Investigation of corrosion inhitibion behavior of 2-aminobenzothiazole and benzotriazole on copper surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 577
|
7 |
卢爽, 任正博, 谢锦印等. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 577
|
8 |
Salvadori B, Cagnini A, Galeotti M, et al. Traditional and innovative protective coatings for outdoor bronze: Application and performance comparison [J]. J. Appl. Polym. Sci., 2018, 135: 46011
|
9 |
Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
|
10 |
Mezzi A, Angelini E, De Caro T, et al. Investigation of the benzotriazole inhibition mechanism of bronze disease [J]. Surf. Interface Anal., 2012, 44: 968
|
11 |
Cho B J, Shima S, Hamada S, et al. Investigation of cu-BTA complex formation during Cu chemical mechanical planarization process [J]. Appl. Surf. Sci., 2016, 384: 505
|
12 |
Monticelli C, Balbo A, Esvan J, et al. Evaluation of 2-(salicylideneimino) thiophenol and other Schiff bases as bronze corrosion inhibitors by electrochemical techniques and surface analysis [J]. Corros. Sci., 2019, 148: 144
|
13 |
Brunoro G, Frignani A, Colledan A, et al. Organic films for protection of copper and bronze against acid rain corrosion [J]. Corros. Sci., 2003, 45: 2219
|
14 |
Peng J, Chen B L, Wang Z C, et al. Surface coordination layer passivates oxidation of copper [J]. Nature, 2020, 586: 390
|
15 |
Hu G, Lv G C, Xu C C, et al. Synergistic effect of corrosion inhibition on bronze by benzotriazole and sodium molybdate [J]. Corros. Sci. Prot. Technol., 2008, 20: 25
|
15 |
胡钢, 吕国诚, 许淳淳等. BTA和钼酸钠对青铜的协同缓蚀作用研究 [J]. 腐蚀科学与防护技术, 2008, 20: 25
|
16 |
Chavez K L, Hess D W. A novel method of etching copper oxide using acetic acid [J]. J. Electrochem. Soc., 2001, 148: G640
|
17 |
Van Ingelgem Y, Tourwé E, Vereecken J, et al. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion [J]. Electrochim. Acta, 2008, 53: 7523
|
18 |
Venkatesh R P, Cho B J, Ramanathan S, et al. Electrochemical impedance spectroscopy (EIS) analysis of BTA removal by TMAH during post Cu CMP cleaning process [J]. J. Electrochem. Soc., 2012, 159: C447
|
19 |
Manivannan R, Cho B J, Hailin X, et al. Characterization of non-amine-based post-copper chemical mechanical planarization cleaning solution [J]. Microelectron. Eng., 2014, 122: 33
|
20 |
Nyrkova L I, Polyakov S H, Osadchuk S O, et al. Determination of the rate of atmospheric corrosion of metal structures by the method of polarization resistance [J]. Mater. Sci., 2012, 47: 683
|
21 |
Cohen S L, Brusic V A, Kaufman F B, et al. X‐ray photoelectron spectroscopy and ellipsometry studies of the electrochemically controlled adsorption of benzotriazole on copper surfaces [J]. J. Vac. Sci. Technol., 1990, 8A: 2417
|
22 |
Kokalj A, Peljhan S. Density functional theory study of adsorption of benzotriazole on Cu2O surfaces [J]. J. Phys. Chem., 2015, 119C: 11625
|
23 |
Finšgar M, Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review [J]. Corros. Sci., 2010, 52: 2737
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|