Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 517-522    DOI: 10.11902/1005.4537.2021.055
  研究报告 本期目录 | 过刊浏览 |
新型复合缓蚀剂对青铜文物的防腐蚀研究
周浩1, 王胜利2, 刘雪峰2, 尤世界2()
1.上海博物馆文物保护科技中心 上海 200231
2.哈尔滨工业大学环境学院 城市水资源与水环境国家重点实验室 哈尔滨 150090
Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics
ZHOU Hao1, WANG Shengli2, LIU Xuefeng2, YOU Shijie2()
1.Conservation Center, Shanghai Museum, Shanghai 200231, China
2.State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
全文: PDF(4114 KB)   HTML
摘要: 

为评价苯骈三氮唑 (BTA) 和甲酸钠 (SFA) 复合缓蚀剂对青铜文物的防腐保护能力,利用电化学方法研究了复合缓蚀剂对青铜试样在3% (质量分数) NaCl溶液中电化学行为的影响,并通过X射线光电子能谱技术 (XPS) 分析了复合缓蚀剂对青铜表面膜成分的影响。结果表明,SFA的加入增强了BTA对青铜的腐蚀抑制作用,提高了青铜表面膜电阻和电极反应的界面电荷转移电阻。XPS分析结果表明,青铜表面氧化物种类对Cu-BTA配合物的形成影响较大,在SFA存在条件下,青铜表面物种以Cu2O为主,更有利于BTA吸附,生成Cu (I)-BTA聚合物保护膜,从而提高青铜的抗腐蚀能力。本研究结果为青铜文物抗腐蚀处理提供了理论依据和有效的方法。

关键词 青铜文物复合缓蚀剂抗腐蚀处理    
Abstract

The effect of a hybrid corrosion inhibitor, namely mixtures of benzotriazole (BTA) and sodium formate (SFA), on the corrosion behavior of bronze in 3% (mass fraction) NaCl solution was assessed by means of CHI760E electrochemical workstation and X-ray photoelectron spectroscopy (XPS) technique. The results demonstrated a satisfied anti-corrosion enhancement effect of SFA, indicated by increased film resistance and interfacial electron-transfer resistance on bronze surface measured by electrochemical impedance spectroscopy. The XPS analysis indicated a major impact of the type of the formed oxides on bronze surface to the formation of Cu-BTA complex. And in the presence of SFA, the corrosion product on bronze surface is dominated by Cu2O, which is more conductive to the adsorption of BTA and the formation of Cu (I)-BTA complex, thereby improving the corrosion resistance of bronze. This study not only provides a deeper insight into the theoretical basis for the anti-corrosion of bronze, but also suggests an effective approach to protect bronze cultural relics as well.

Key wordsbronze relic    hybrid corrosion inhibitor    anti-corrosion treatment
收稿日期: 2021-03-18     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51671117)
通讯作者: 尤世界     E-mail: sjyou@hit.edu.cn
Corresponding author: YOU Shijie     E-mail: sjyou@hit.edu.cn
作者简介: 周浩,男,1970年生,副研究馆员

引用本文:

周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
Hao ZHOU, Shengli WANG, Xuefeng LIU, Shijie YOU. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 517-522.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.055      或      https://www.jcscp.org/CN/Y2021/V41/I4/517

图1  青铜试样抛光前后表面SEM像
SampleBTA / mol·L-1SFA / mol·L-1
#000
#10.050
#20.040.01
#30.030.02
#40.020.03
#50.010.04
#600.05
表1  BTA和SFA复合比例
图2  青铜试样在3% NaCl溶液中开路电位随时间变化曲线
图3  青铜试样在3%NaCl溶液中浸泡24 h的表面腐蚀情况
图4  青铜试样在3%NaCl溶液中的动电位极化曲线
SampleEcorr / mVIcorr / μA·cm-2η / %
#0-25157.38---
#1-3473.5893.76
#2-3453.8493.31
#3-3803.2594.34
#4-3282.9194.93
#5-3623.0694.67
#6-223141.77-147.07
表2  动电位极化曲线的拟合参数
图5  青铜试样在3%NaCl溶液中的EIS
图6  用于拟合阻抗数据的等效电路模型
ParameterRs / Ω·cm2Y1 / S·Secn·cm-2n1R1 / Ω·cm2Y2 / S·Secn·cm-2n2R2 / Ω·cm2Zw / Ω·cm2Rp / Ω·cm2η / %
#01.994.9×10-60.8014.5---------0.000714.5---
#12.222.9×10-50.7529.126.4×10-60.61166.20---195.3289.85
#22.991.5×10-60.8271.652.6×10-50.91478.98---550.6396.40
#31.641.3×10-60.7381.351.4×10-40.78753.79---835.1497.38
#43.264.01×10-50.851212.685.1×10-50.4634043.04---35255.7299.95
#52.708.1×10-60.90734.123.2×10-40.521373.41---2107.5399.01
#63.947.7×10-70.960.65---------0.00060.65-180.66
表3  青铜样品的等效电路参数
图7  青铜表面膜的总XPS谱图和Cu2p XPS谱
SampleCOPbClNSnCu
#070.3518.230.381.463.130.745.71
#178.7312.760.31.55.370.271.07
#477.3211.640.210.848.010.261.72
#663.4524.862.520.892.662.453.16
表4  青铜试样经缓蚀剂处理后表面膜成分
图8  青铜表面Cu (II) 与Cu (I) 比例
1 Wang Z C, Li Y, Jiang X D, et al. Research progress on ancient bronze corrosion in different environments and using different conservation techniques: A review [J]. MRS Adv., 2017, 2: 2033
2 Shamnamol G K, Sreelakshmi K P, Ajith G, et al. Effective utilization of drugs as green corrosion inhibitor-a review [J]. AIP Conf. Proc., 2020, 2225: 070006
3 Verma C, Verma D K, Ebenso E E, et al. Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: an overview [J]. Heteroat. Chem., 2018, 29: e21437
4 Liu L, Lu S, Wu Y Q, et al. Corrosion inhibition behavior of four benzimidazole derivatives and benzotriazole on copper surface [J]. Anti-Corros. Methods Mater., 2020, 67: 565
5 Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
5 吕祥鸿, 张晔, 闫亚丽等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
6 Chugh B, Singh A K, Thakur S, et al. An exploration about the interaction of mild steel with hydrochloric acid in the presence of N-(Benzo [d]thiazole-2-yl)-1-phenylethan-1-imines [J]. J. Phys. Chem., 2019, 123C: 22897
7 Lu S, Ren Z B, Xie J Y, et al. Investigation of corrosion inhitibion behavior of 2-aminobenzothiazole and benzotriazole on copper surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 577
7 卢爽, 任正博, 谢锦印等. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 577
8 Salvadori B, Cagnini A, Galeotti M, et al. Traditional and innovative protective coatings for outdoor bronze: Application and performance comparison [J]. J. Appl. Polym. Sci., 2018, 135: 46011
9 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
10 Mezzi A, Angelini E, De Caro T, et al. Investigation of the benzotriazole inhibition mechanism of bronze disease [J]. Surf. Interface Anal., 2012, 44: 968
11 Cho B J, Shima S, Hamada S, et al. Investigation of cu-BTA complex formation during Cu chemical mechanical planarization process [J]. Appl. Surf. Sci., 2016, 384: 505
12 Monticelli C, Balbo A, Esvan J, et al. Evaluation of 2-(salicylideneimino) thiophenol and other Schiff bases as bronze corrosion inhibitors by electrochemical techniques and surface analysis [J]. Corros. Sci., 2019, 148: 144
13 Brunoro G, Frignani A, Colledan A, et al. Organic films for protection of copper and bronze against acid rain corrosion [J]. Corros. Sci., 2003, 45: 2219
14 Peng J, Chen B L, Wang Z C, et al. Surface coordination layer passivates oxidation of copper [J]. Nature, 2020, 586: 390
15 Hu G, Lv G C, Xu C C, et al. Synergistic effect of corrosion inhibition on bronze by benzotriazole and sodium molybdate [J]. Corros. Sci. Prot. Technol., 2008, 20: 25
15 胡钢, 吕国诚, 许淳淳等. BTA和钼酸钠对青铜的协同缓蚀作用研究 [J]. 腐蚀科学与防护技术, 2008, 20: 25
16 Chavez K L, Hess D W. A novel method of etching copper oxide using acetic acid [J]. J. Electrochem. Soc., 2001, 148: G640
17 Van Ingelgem Y, Tourwé E, Vereecken J, et al. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion [J]. Electrochim. Acta, 2008, 53: 7523
18 Venkatesh R P, Cho B J, Ramanathan S, et al. Electrochemical impedance spectroscopy (EIS) analysis of BTA removal by TMAH during post Cu CMP cleaning process [J]. J. Electrochem. Soc., 2012, 159: C447
19 Manivannan R, Cho B J, Hailin X, et al. Characterization of non-amine-based post-copper chemical mechanical planarization cleaning solution [J]. Microelectron. Eng., 2014, 122: 33
20 Nyrkova L I, Polyakov S H, Osadchuk S O, et al. Determination of the rate of atmospheric corrosion of metal structures by the method of polarization resistance [J]. Mater. Sci., 2012, 47: 683
21 Cohen S L, Brusic V A, Kaufman F B, et al. X‐ray photoelectron spectroscopy and ellipsometry studies of the electrochemically controlled adsorption of benzotriazole on copper surfaces [J]. J. Vac. Sci. Technol., 1990, 8A: 2417
22 Kokalj A, Peljhan S. Density functional theory study of adsorption of benzotriazole on Cu2O surfaces [J]. J. Phys. Chem., 2015, 119C: 11625
23 Finšgar M, Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review [J]. Corros. Sci., 2010, 52: 2737
[1] 王菊琳; 许淳淳; 于淼 . 青铜文物表面腐蚀产物的组成及深度分布研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 163-166 .
[2] 汪鹰;史苑芗;魏宝明;林昌健. 原子力显微镜对钢筋表面钝化膜的研究[J]. 中国腐蚀与防护学报, 1998, 18(2): 102-106.