|
|
交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响 |
张腾, 刘静( ), 黄峰, 胡骞, 戈方宇 |
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081 |
|
Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution |
ZHANG Teng, LIU Jing( ), HUANG Feng, HU Qian, GE Fangyu |
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
Teng ZHANG,
Jing LIU,
Feng HUANG,
Qian HU,
Fangyu GE.
Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 226-232.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.259
或
https://www.jcscp.org/CN/Y2021/V41/I2/226
|
1 |
Huang W P, Liu C. Study on the method of the fatigue design of offshore platforms considering extreme sea states [J]. Ocean Eng., 2012, 30(3): 125
|
1 |
黄维平, 刘超. 极端海洋环境对海洋平台疲劳寿命的影响 [J]. 海洋工程, 2012, 30(3): 125
|
2 |
Fei W, Zheng L. Load assessment on the horizontal braces of semi-submersible drilling platform under ocean wave [J]. Arabian J. Sci. Eng., 2017, 42: 4789
|
3 |
Song J, Guo G X, Zhang S, et al. Experimental research on corrosion fatigue of steel strands in a salt fog environment [J]. Sci. Adv. Mater., 2019, 11: 291
|
4 |
Adedipe O, Brennan F, Mehmanparast A, et al. Corrosion fatigue crack growth mechanisms in offshore monopile steel weldments [J]. Fatig. Fract. Eng. Mater. Struct., 2017, 40: 1868
|
5 |
Chen T, Nutter J, Hawk J, et al. Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: Effect of corrosive environment [J]. Corros. Sci., 2014, 89: 146
|
6 |
Khan H I, Zhang N Q, Xu W Q, et al. Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water [J]. Int. J. Fatig., 2019, 118: 22
|
7 |
Li Y, Pei Z B, Zaman B, et al. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater [J]. Mater. Res. Exp., 2018, 5: 13
|
8 |
Taketomi S, Yokobori A T, Takei K, et al. Corrosion fatigue crack growth rate for petroleum refining pressure vessel materials (2.25Cr-1Mo Steel) [J]. Corrosion, 2012, 64: 744
|
9 |
Zhao T L, Liu Z Y, Du C W, et al. Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2017, A708: 181
|
10 |
Chandran K S R. A new approach to the mechanics of fatigue crack growth in metals: Correlation of mean stress (stress ratio) effects using the change in net-section strain energy [J]. Acta Mater., 2017, 135: 201
|
11 |
El May M, Palin-Luc T, Saintier N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3 [J]. Int. J. Fatig., 2013, 47: 330
|
12 |
Chen Y J, Liu C C, Zhou J, et al. Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy [J]. J. Alloy. Compd., 2019, 772: 1
|
13 |
Guan L, Zhang B, Yong X P, et al. Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization [J]. Corros. Sci., 2015, 93: 80
|
14 |
Guan L, Zhang B, Yong X P, et al. Quantitative understanding of the current responses under elastic cyclic loading for 304 stainless steel [J]. J. Electrochem. Soc., 2016, 163: C627
|
15 |
Zhao T L, Liu Z Y, Chao L, et al. Variation of the corrosion behavior prior to crack initiation of E690 steel fatigued in simulated seawater with various cyclic stress levels [J]. J. Mater. Eng. Perform., 2018, 27: 4921
|
16 |
Zhao T L, Liu Z Y, Du C W, et al. Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater [J]. Int. J. Fatig., 2018, 110: 105
|
17 |
Harrington S P, Devine T M. Relation between the semiconducting properties of a passive film and reduction reaction rates [J]. J. Electrochem. Soc., 2009, 156: C154
|
18 |
Pessoa D F, Kirchhoff G, Zimmermann M. Influence of loading frequency and role of surface micro-defects on fatigue behavior of metastable austenitic stainless steel AISI 304 [J]. Int. J. Fatig., 2017, 103: 48
|
19 |
Adedipe O, Brennan F, Kolios A. Corrosion fatigue load frequency sensitivity analysis [J]. Mar. Struct., 2015, 42: 115
|
20 |
Zhao T L. Corrosion fatigue crack initiation behaviors and mechanisms of E690 steel in simulated seawater [D]. Beijing: University of Science and Technology Beijing, 2018
|
20 |
赵天亮. E690钢在模拟海水中的腐蚀疲劳裂纹萌生行为及机理研究 [D]. 北京: 北京科技大学, 2018
|
21 |
Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
|
22 |
Liu Z Y, Li X G, Cheng Y F. Effect of strain rate on cathodic reaction during stress corrosion cracking of X70 pipeline steel in a near-neutral pH solution [J]. J. Mater. Eng. Perform., 2011, 20: 1242
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|