Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 226-232    DOI: 10.11902/1005.4537.2019.259
  研究报告 本期目录 | 过刊浏览 |
交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响
张腾, 刘静(), 黄峰, 胡骞, 戈方宇
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution
ZHANG Teng, LIU Jing(), HUANG Feng, HU Qian, GE Fangyu
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(11381 KB)   HTML
摘要: 

采用电化学技术与微观形貌观察,研究了不同频率 (0.1,0.5,1.0,1.3,1.8和2.0 Hz) 弹性交变应力下E690高强海洋工程用钢在3.5% (质量分数) NaCl溶液中的腐蚀电化学行为,探讨了加载频率对腐蚀反应机理的影响。结果表明,存在一个临界频率,将交变应力作用下腐蚀电化学行为分为两个不同的阶段。加载频率在临界频率以下时,随着弹性交变应力加载频率的增大,E690钢的应变速率峰值增大,钢的表面产生活性位点增多,腐蚀过程主要受活化控制,腐蚀速率和局部腐蚀面积均随着加载频率的提高而增大。加载频率超过临界频率时,腐蚀过程主要受扩散控制,腐蚀速率和局部腐蚀面积不受加载频率变化的影响。

关键词 交变应力加载频率E690钢电化学行为    
Abstract

The corrosion behavior of E690 steel in 3.5% (mass fraction) NaCl solution by applied elastic alternating stresses of different frequencies (0.1, 0.5, 1.0, 1.3, 1.8 and 2.0 Hz) was studied by electrochemical test and surface characterization. Results show that there is a critical loading frequency for the applied alternating stress that divides the corrosion electrochemical behavior into two different regions. When loading frequency is below the critical frequency, the maximum strain rate of E690 steel and the number of active sites on steel surface increases with the increasing loading frequency. The corrosion process is mainly controlled by activation. The corrosion rate and the portion of localized corrosion area increase with the increase of the loading frequency. When loading frequency is higher than the critical frequency, the corrosion process is mainly controlled by diffusion. Hence, the loading frequency has little impact on the corrosion rate and localized corrosion area.

Key wordsalternating stress    loading frequency    E690 steel    electrochemical behavior
收稿日期: 2019-12-16     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51871172)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 张腾,男,1994年生,硕士生

引用本文:

张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
Teng ZHANG, Jing LIU, Feng HUANG, Qian HU, Fangyu GE. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 226-232.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.259      或      https://www.jcscp.org/CN/Y2021/V41/I2/226

图1  E690钢微观组织形貌
图2  用于交变应力下电化学实验的试样和电化学测试装置示意图
图3  不同加载频率下E690钢在3.5%NaCl溶液中的开路电位随时间的变化
图4  不同加载频率下E690钢在3.5%NaCl溶液中的腐蚀电流密度和极化电阻
图5  不同加载频率下E690钢在3.5%NaCl溶液中的极化曲线
Loading frequency / HzbamV·dec-1bcmV·dec-1IcorrmA·cm-2EcorrV
Free58.0-677.42.01×10-2-0.6522
0.170.1-383.12.17×10-2-0.6863
0.576.0-491.92.54×10-2-0.6641
1.084.6-545.53.60×10-2-0.6760
1.388.0-553.73.71×10-2-0.6426
1.884.1-835.23.66×10-2-0.5895
2.082.5-1039.53.87×10-2-0.6076
表1  不同加载频率下E690钢在3.5%NaCl溶液中极化曲线拟合参数
图6  不同加载频率下E690钢在3.5%NaCl溶液中的电化学阻抗谱和等效电路
Load frequency / HzRsΩ·cm2CeffμF·cm2Y0sn·Ω-1·cm-2nRctΩ·cm2
Free5.019428.991.296×10-30.75771555
0.13.87081.437.823×10-40.71951112
0.54.490128.037.352×10-40.7659883
1.04.688171.489.075×10-40.7664682
1.34.233251.361.075×10-30.7879734
1.84.340240.829.646×10-40.7980709
2.04.228149.417.033×10-40.7899710
表2  不同加载频率下E690钢在3.5%NaCl溶液中的EIS拟合参数值
图7  E690钢在3.5%NaCl溶液中不同加载频率下腐蚀24 h后的表面形貌
图8  不同加载频率下E690钢在3.5%NaCl溶液中腐蚀24 h后基体的腐蚀形貌
图9  交变应力频率对E690钢在3.5%NaCl溶液中腐蚀速率及腐蚀反应控制步骤的影响机制示意图
图10  不同加载频率下应变速率随时间的变化
1 Huang W P, Liu C. Study on the method of the fatigue design of offshore platforms considering extreme sea states [J]. Ocean Eng., 2012, 30(3): 125
1 黄维平, 刘超. 极端海洋环境对海洋平台疲劳寿命的影响 [J]. 海洋工程, 2012, 30(3): 125
2 Fei W, Zheng L. Load assessment on the horizontal braces of semi-submersible drilling platform under ocean wave [J]. Arabian J. Sci. Eng., 2017, 42: 4789
3 Song J, Guo G X, Zhang S, et al. Experimental research on corrosion fatigue of steel strands in a salt fog environment [J]. Sci. Adv. Mater., 2019, 11: 291
4 Adedipe O, Brennan F, Mehmanparast A, et al. Corrosion fatigue crack growth mechanisms in offshore monopile steel weldments [J]. Fatig. Fract. Eng. Mater. Struct., 2017, 40: 1868
5 Chen T, Nutter J, Hawk J, et al. Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: Effect of corrosive environment [J]. Corros. Sci., 2014, 89: 146
6 Khan H I, Zhang N Q, Xu W Q, et al. Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water [J]. Int. J. Fatig., 2019, 118: 22
7 Li Y, Pei Z B, Zaman B, et al. Effects of plastic deformations on the electrochemical and stress corrosion cracking behaviors of TC2 titanium alloy in simulated seawater [J]. Mater. Res. Exp., 2018, 5: 13
8 Taketomi S, Yokobori A T, Takei K, et al. Corrosion fatigue crack growth rate for petroleum refining pressure vessel materials (2.25Cr-1Mo Steel) [J]. Corrosion, 2012, 64: 744
9 Zhao T L, Liu Z Y, Du C W, et al. Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2017, A708: 181
10 Chandran K S R. A new approach to the mechanics of fatigue crack growth in metals: Correlation of mean stress (stress ratio) effects using the change in net-section strain energy [J]. Acta Mater., 2017, 135: 201
11 El May M, Palin-Luc T, Saintier N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3 [J]. Int. J. Fatig., 2013, 47: 330
12 Chen Y J, Liu C C, Zhou J, et al. Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy [J]. J. Alloy. Compd., 2019, 772: 1
13 Guan L, Zhang B, Yong X P, et al. Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization [J]. Corros. Sci., 2015, 93: 80
14 Guan L, Zhang B, Yong X P, et al. Quantitative understanding of the current responses under elastic cyclic loading for 304 stainless steel [J]. J. Electrochem. Soc., 2016, 163: C627
15 Zhao T L, Liu Z Y, Chao L, et al. Variation of the corrosion behavior prior to crack initiation of E690 steel fatigued in simulated seawater with various cyclic stress levels [J]. J. Mater. Eng. Perform., 2018, 27: 4921
16 Zhao T L, Liu Z Y, Du C W, et al. Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater [J]. Int. J. Fatig., 2018, 110: 105
17 Harrington S P, Devine T M. Relation between the semiconducting properties of a passive film and reduction reaction rates [J]. J. Electrochem. Soc., 2009, 156: C154
18 Pessoa D F, Kirchhoff G, Zimmermann M. Influence of loading frequency and role of surface micro-defects on fatigue behavior of metastable austenitic stainless steel AISI 304 [J]. Int. J. Fatig., 2017, 103: 48
19 Adedipe O, Brennan F, Kolios A. Corrosion fatigue load frequency sensitivity analysis [J]. Mar. Struct., 2015, 42: 115
20 Zhao T L. Corrosion fatigue crack initiation behaviors and mechanisms of E690 steel in simulated seawater [D]. Beijing: University of Science and Technology Beijing, 2018
20 赵天亮. E690钢在模拟海水中的腐蚀疲劳裂纹萌生行为及机理研究 [D]. 北京: 北京科技大学, 2018
21 Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
22 Liu Z Y, Li X G, Cheng Y F. Effect of strain rate on cathodic reaction during stress corrosion cracking of X70 pipeline steel in a near-neutral pH solution [J]. J. Mater. Eng. Perform., 2011, 20: 1242
[1] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[2] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[3] 赵洪涛,陆卫中,李京,郑玉贵. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[4] 孟向楠,陈旭,吴明,赵阳,范裕文. 静水压力对X100钢在NaHCO3+NaCl溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[5] 袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[6] 熊媛媛 张 娅 胡少峰 陈秋荣, 谢有桃. 添加剂La(CH3COO)3和NaF对AZ31在
Mg(ClO4)2溶液中电化学性能的影响
[J]. 中国腐蚀与防护学报, 2013, 33(3): 241-244.
[7] 王石青 何德良 丁庆云 徐以兵 高 娟 区永康. 模数对水性硅酸钾富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 359-362.
[8] 刘斌; 齐公台; 冉伟; 赵婷婷 . 模拟偏析相Al2Zn在3%NaCl溶液中的电化学行为[J]. 中国腐蚀与防护学报, 2007, 27(2): 93-96 .
[9] 刘斌; 李瑛; 王福会 . 锌粉颜料尺寸对有机富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(6): 350-354 .
[10] 齐公台; 屈钧娥; 廖海星 . 含RE铝阳极中析出相的电化学行为研究[J]. 中国腐蚀与防护学报, 2003, 23(6): 355-358 .
[11] 王荣;郑修麟. 加载频率和超载对腐蚀疲劳裂纹起始寿命的影响[J]. 中国腐蚀与防护学报, 1996, 16(4): 256-262.