Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 358-366    DOI: 10.11902/1005.4537.2019.024
  研究报告 本期目录 | 过刊浏览 |
模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究
谢冬柏1(), 洪昊2, 王文3, 彭晓1, 多树旺2
1.南昌航空大学材料科学与工程学院 南昌 330063
2.江西科技师范大学 江西省材料表面工程重点实验室 南昌 330013
3.中国科学院金属研究所金属腐蚀与防护实验室 沈阳 110016
Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment
XIE Dongbai1(), HONG Hao2, WANG Wen3, PENG Xiao1, DUO Shuwang2
1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
3. Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(7136 KB)   HTML
摘要: 

研究了耐热不锈钢1Cr11Ni2W2MoV在600,700和800 ℃空气和模拟煤油燃烧环境中的氧化行为,对表面生成的氧化物进行了表征,并讨论了环境介质对耐热不锈钢高温氧化行为的影响机制。结果表明:1Cr11Ni2W2MoV耐热钢在热空气中表面生成的氧化膜完整致密,表现出优良的抗氧化性能;而在模拟煤油燃烧环境中表面形成了疏松的氧化膜,并出现了瘤状氧化物,加速了不锈钢中Cr的消耗,明显降低了表面氧化膜的保护性。

关键词 燃烧环境火灾调查1Cr11Ni2W2MoV氧化物高温腐蚀    
Abstract

Metallic materials exposed to fire scenes are usually subjected to high temperature oxidation, of which the atmosphere composition and temperature have been considered as vital parameters. In this study, the high temperature oxidation behavior of 1Cr11Ni2W2MoV stainless steel in air and simulated kerosene-combustion atmosphere at 600, 700 and 800 ℃ were studied by means of visual analysis and micro-structural observation of the formed oxide scale. The results show that the 1Cr11Ni2W2MoV possessed good oxidation resistance and the scales primarily remained continuous and well adherent to the substrate in air. Whilst, the presence of kerosene combustion products apparently increased the consumption of Cr element, reduced the adhesion of oxide scale and hence decreased the oxidation resistance of the steel. Additionally, the combustion products of kerosene resulted in the formation of nodular oxides in the formed scale. Therefore, the combustion of kerosene in fire scene could increase the oxidation rate of 1Cr11Ni2W2MoV, which are expected to offer complementary insight into reconstruction of fire scene.

Key wordscombustion environment    fire investigation    1Cr11Ni2W2MoV    oxide    high temperature oxidation
收稿日期: 2019-02-14     
ZTFLH:  TG172  
基金资助:南昌航空大学博士启动基金,痕迹检验鉴定技术公安部重点实验室开放课题 (2019) 及江西省材料表面工程重点实验室开放课题(KFGJ19009)
通讯作者: 谢冬柏     E-mail: dbxie@aliyun.com
Corresponding author: XIE Dongbai     E-mail: dbxie@aliyun.com
作者简介: 谢冬柏,男,1973年生,博士

引用本文:

谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
Dongbai XIE, Hao HONG, Wen WANG, Xiao PENG, Shuwang DUO. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 358-366.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.024      或      https://www.jcscp.org/CN/Y2020/V40/I4/358

图1  高温氧化实验装置 (箭头所示方向为燃烧气体的流动方向)
图2  反应炉中温度曲线
图3  试样在600 ℃热空气和煤油燃烧气氛中氧化不同时间后的表面宏观形貌
图4  试样在800 ℃热空气和煤油燃烧气氛中氧化不同时间后的表面宏观形貌
图5  1Cr11Ni2W2MoV不锈钢试样在600 ℃不同气氛中氧化30 min后表面的AFM像
图6  1Cr11Ni2W2MoV不锈钢试样在800 ℃下不同气氛中氧化30 min后表面的AFM像
图7  1Cr11Ni2W2MoV不锈钢试样在不同温度下煤油燃烧气氛中氧化1 h后表面的AFM像
图8  1Cr11Ni2W2MoV不锈钢试样在600 ℃下不同气氛中氧化1 h后表面的SEM像
图9  1Cr11Ni2W2MoV不锈钢试样在800 ℃下不同气氛中氧化1 h后表面的SEM像
图10  1Cr11Ni2W2MoV不锈钢试样在600 ℃下不同气氛中氧化1 h后截面的SEM像
图11  1Cr11Ni2W2MoV不锈钢试样在700 ℃下不同气氛中氧化1 h后截面的SEM像
图12  1Cr11Ni2W2MoV不锈钢试样在800 ℃下不同气氛中氧化30 min后截面的SEM像
图13  1Cr11Ni2W2MoV不锈钢试样在不同气氛中氧化后的XRD谱
[1] Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion [J]. Prog. Energy Combust. Sci., 2009, 35: 293
[2] Fan Z L, Sun B, Lu Z B, et al. Determination of components in gasoline and its soot by gas chromatography ion trap tandem mass spectrometry [J]. Fire Sci. Technol., 2011, 30: 1081
[2] (范子琳, 苏冰, 鲁志宝等. 气相色谱/多级离子阱技术分析汽油烟尘成分 [J]. 消防科学与技术, 2011, 30: 1081)
[3] Wu C H, Chen C L, Huang C T, et al. Identification of gasoline soot in suspect arson cases by using headspace solid phase microextraction-GC/MS [J]. Anal. Lett., 2004, 37: 1373
[4] Yoon J K, Thakre P, Yang V. Modeling of RDX/GAP/BTTN pseudo-propellant combustion [J]. Combust. Flame, 2006, 145: 300
[5] Rouillard F, Martinelli L. Corrosion of 9Cr steel in CO2 at intermediate temperature III: Modelling and simulation of void-induced duplex oxide growth [J]. Oxid. Met., 2012, 77: 71
[6] Lai X J, Tang S, Li H Q, et al. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene [J]. Polym. Degrad. Stabil., 2015, 113: 22
[7] Qi F, Mcilroy M A. Identifying combustion intermediates via tunable vacuum ultraviolet photoionization mass spectrometry [J]. Combust. Sci. Technol., 2005, 177: 2021
[8] Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 74
[8] (谢冬柏, 单国. 燃油火场环境中助燃剂的快速检验方法研究 [J]. 中国腐蚀与防护学报, 2017, 37: 74)
[9] Xie D B, Wushur W, Wang Z, et al. Effect of kerosene combustion atmosphere on corrosion of copper at high temperature [J]. Corros. Sci. Prot. Technol., 2016, 28: 511
[9] (谢冬柏, 吾提克尔·吾守尔, 王震等. 煤油燃烧环境气氛对金属材料高温腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2016, 28: 511)
[10] Xie D B, Wushur W, Wang Z, et al. Effect of combustion adjuvants in fire scene environments on high temperature corrosion of carbon steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 15
[10] (谢冬柏, 吾提克尔·吾守尔, 王震等. 助燃剂火场环境中钢的高温腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 15)
[11] Xie D B, Shan G, Deng S, et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres [J]. Fire Mater., 2017, 41: 614
[12] Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: a valuable tool for fire investigations [J]. Fire Mater., 2018, 42: 156
[13] Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052 [J]. Fire Mater., 2018, 42: 278
[14] Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
[15] Plugatyr A, Svishchev I M. Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept [J]. J. Supercr. Fluids, 2008, 44: 31
[16] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
[17] Henry S, Galerie A, Antoni L. Abnormal oxidation of stabilized ferritic stainless steels in water vapor [J]. Mater. Sci. Forum, 2001, 369-372: 353
[18] Thomlinson L, Cory N J. Hydrogen emission during the steam oxidation of ferritic steels: Kinetics and mechanism [J]. Corros. Sci., 1989, 29: 939
[19] Huczkowski P, Olszewski T, Schiek M, et al. Effect of SO2 on oxidation of metallic materials in CO2/H2O-rich gases relevant to oxyfuel environments [J]. Mater. Corros., 2014, 65: 121
[20] Kritzer P, Boukis N, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures [J]. Corrosion, 2000, 56: 1093
[21] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
[22] Abuluwefa H T, Guthrie R I L, Ajersch F. Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation [J]. Metall. Mater. Trans., 1997, 28A: 1633
[1] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[2] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[3] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[4] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[5] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[6] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[7] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[8] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[9] 黄本生, 尹文锋, 王小红, 施宜君. 常减压装置常用钢材在高温原油馏分中的腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[10] 彭德全, 胡石林, 张平柱, 王辉. 304L在模拟压水堆一回路条件下长期均匀腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 288-292.
[11] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[12] 潘太军,陈德贵,张轲,胡静. NF616和12CrMoV在模拟垃圾气化环境中的高温腐蚀[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
[13] 金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
[14] 董泽华,何金杯,郭兴蓬,张耀享,汉继成. 环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[15] 李辉 . 钢筋混凝土阴极保护用RuMn/Ti阴极的电化学性能[J]. 中国腐蚀与防护学报, 2004, 24(5): 280-283 .