|
|
模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究 |
谢冬柏1( ), 洪昊2, 王文3, 彭晓1, 多树旺2 |
1.南昌航空大学材料科学与工程学院 南昌 330063 2.江西科技师范大学 江西省材料表面工程重点实验室 南昌 330013 3.中国科学院金属研究所金属腐蚀与防护实验室 沈阳 110016 |
|
Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment |
XIE Dongbai1( ), HONG Hao2, WANG Wen3, PENG Xiao1, DUO Shuwang2 |
1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2. Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China 3. Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
Dongbai XIE,
Hao HONG,
Wen WANG,
Xiao PENG,
Shuwang DUO.
Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 358-366.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.024
或
https://www.jcscp.org/CN/Y2020/V40/I4/358
|
[1] |
Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion [J]. Prog. Energy Combust. Sci., 2009, 35: 293
|
[2] |
Fan Z L, Sun B, Lu Z B, et al. Determination of components in gasoline and its soot by gas chromatography ion trap tandem mass spectrometry [J]. Fire Sci. Technol., 2011, 30: 1081
|
[2] |
(范子琳, 苏冰, 鲁志宝等. 气相色谱/多级离子阱技术分析汽油烟尘成分 [J]. 消防科学与技术, 2011, 30: 1081)
|
[3] |
Wu C H, Chen C L, Huang C T, et al. Identification of gasoline soot in suspect arson cases by using headspace solid phase microextraction-GC/MS [J]. Anal. Lett., 2004, 37: 1373
|
[4] |
Yoon J K, Thakre P, Yang V. Modeling of RDX/GAP/BTTN pseudo-propellant combustion [J]. Combust. Flame, 2006, 145: 300
|
[5] |
Rouillard F, Martinelli L. Corrosion of 9Cr steel in CO2 at intermediate temperature III: Modelling and simulation of void-induced duplex oxide growth [J]. Oxid. Met., 2012, 77: 71
|
[6] |
Lai X J, Tang S, Li H Q, et al. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene [J]. Polym. Degrad. Stabil., 2015, 113: 22
|
[7] |
Qi F, Mcilroy M A. Identifying combustion intermediates via tunable vacuum ultraviolet photoionization mass spectrometry [J]. Combust. Sci. Technol., 2005, 177: 2021
|
[8] |
Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 74
|
[8] |
(谢冬柏, 单国. 燃油火场环境中助燃剂的快速检验方法研究 [J]. 中国腐蚀与防护学报, 2017, 37: 74)
|
[9] |
Xie D B, Wushur W, Wang Z, et al. Effect of kerosene combustion atmosphere on corrosion of copper at high temperature [J]. Corros. Sci. Prot. Technol., 2016, 28: 511
|
[9] |
(谢冬柏, 吾提克尔·吾守尔, 王震等. 煤油燃烧环境气氛对金属材料高温腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2016, 28: 511)
|
[10] |
Xie D B, Wushur W, Wang Z, et al. Effect of combustion adjuvants in fire scene environments on high temperature corrosion of carbon steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 15
|
[10] |
(谢冬柏, 吾提克尔·吾守尔, 王震等. 助燃剂火场环境中钢的高温腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 15)
|
[11] |
Xie D B, Shan G, Deng S, et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres [J]. Fire Mater., 2017, 41: 614
|
[12] |
Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: a valuable tool for fire investigations [J]. Fire Mater., 2018, 42: 156
|
[13] |
Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052 [J]. Fire Mater., 2018, 42: 278
|
[14] |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
|
[15] |
Plugatyr A, Svishchev I M. Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept [J]. J. Supercr. Fluids, 2008, 44: 31
|
[16] |
Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
|
[17] |
Henry S, Galerie A, Antoni L. Abnormal oxidation of stabilized ferritic stainless steels in water vapor [J]. Mater. Sci. Forum, 2001, 369-372: 353
|
[18] |
Thomlinson L, Cory N J. Hydrogen emission during the steam oxidation of ferritic steels: Kinetics and mechanism [J]. Corros. Sci., 1989, 29: 939
|
[19] |
Huczkowski P, Olszewski T, Schiek M, et al. Effect of SO2 on oxidation of metallic materials in CO2/H2O-rich gases relevant to oxyfuel environments [J]. Mater. Corros., 2014, 65: 121
|
[20] |
Kritzer P, Boukis N, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures [J]. Corrosion, 2000, 56: 1093
|
[21] |
Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
|
[22] |
Abuluwefa H T, Guthrie R I L, Ajersch F. Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation [J]. Metall. Mater. Trans., 1997, 28A: 1633
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|