Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 295-301    DOI: 10.11902/1005.4537.2019.150
  综合评述 本期目录 | 过刊浏览 |
CO2腐蚀产物膜的研究进展
白海涛1(), 杨敏2, 董小卫3, 马云1, 王瑞1
1.西安石油大学石油工程学院 陕西省油气田特种增产技术重点实验室 西安 710065
2.川庆钻探工程有限公司长庆井下技术作业公司 西安 710021
3.中国石油新疆油田分公司工程技术研究院 克拉玛依 834000
Research Progress on CO2 Corrosion Product Scales of Carbon Steels
BAI Haitao1(), YANG Min2, DONG Xiaowei3, MA Yun1, WANG Rui1
1. Institute of Petroleum Engineering, Xi'an Shiyou University, Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China
2. Changqing Downhole Technology Operating Company, Chuanqing Drilling Engineering Limited Company, Xi'an 710021, China
3. Engineering Technology Research Institute of PetroChina Xinjiang Oilfield Branch Company, Kelamayi 834000, China
全文: PDF(3592 KB)   HTML
摘要: 

系统总结了碳钢的CO2腐蚀产物膜研究进展,重点介绍了CO2腐蚀产物膜的结构、化学组成、生长过程、电化学性质及力学性质。展望了对碳钢的CO2腐蚀产物膜研究发展趋势和重点。

关键词 CO2腐蚀产物膜生长过程电化学性质力学性质    
Abstract

The research progress on CO2 corrosion product scales of carbon steels was reviewed. The structure, chemical composition, growth process, electrochemical properties and mechanical properties of the corrosion product scales were mainly introduced. The development trend and emphasis of the research on the CO2 corrosion product scales of carbon steel in the future are prospected.

Key wordsCO2 corrosion product scale    growth process    electrochemical property    mechanical property
收稿日期: 2019-09-09     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51504193);陕西省教育厅科研计划(15JS090);陕西省自然科学基础研究计划(2018JQ5148)
通讯作者: 白海涛     E-mail: baihaitao_xsyu@126.com
Corresponding author: BAI Haitao     E-mail: baihaitao_xsyu@126.com
作者简介: 白海涛,男,1986年生,博士

引用本文:

白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
Haitao BAI, Min YANG, Xiaowei DONG, Yun MA, Rui WANG. Research Progress on CO2 Corrosion Product Scales of Carbon Steels. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 295-301.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.150      或      https://www.jcscp.org/CN/Y2020/V40/I4/295

图1  不同结构的腐蚀产物膜[21]
图2  不同浸泡时间下P110钢的腐蚀产物膜形态[33]
图3  不同浸泡时间下X70钢的腐蚀产物膜形态[31]
图4  不同类型腐蚀产物膜的腐蚀等效电路图[42]
图5  不同浸泡时间下腐蚀产物膜状态和腐蚀等效电路图[43]
图6  不同腐蚀时期的腐蚀等效电路图[44]
[1] Kuramochi T, Ramírez A, Turkenburg W, et al. Effect of CO2 capture on the emissions of air pollutants from industrial processes [J]. Int. J. Greenh. Gas Con., 2012, 10: 310
doi: 10.1016/j.ijggc.2012.05.022
[2] Zeng R S, Vincent C J, Tian X Y, et al. New potential carbon emission reduction enterprises in China: Deep geological storage of CO2 emitted through industrial usage of coal in China [J]. Greenh. Gases: Sci. Technol., 2013, 3: 106
doi: 10.1002/ghg.1314
[3] Luhar A K, Etheridge D M, Leuning R, et al. Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements [J]. J. Geophys. Res.: Atmos., 2014, 119: 10959
doi: 10.1002/2014JD021880
[4] Pfennig A, Linke B, Kranzmann A. Corrosion behaviour of pipe steels exposed for 2 years to CO2-saturated saline aquifer environment similar to the CCS-site Ketzin, Germany [J]. Energy Procedia, 2011, 4: 5122
doi: 10.1016/j.egypro.2011.02.488
[5] Zhang G A, Cheng Y F. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water [J]. Electrochim. Acta, 2011, 56: 1676
doi: 10.1016/j.electacta.2010.10.059
[6] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production: A compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
[7] Li C F, Wang B, Zhang Y, et al. Research progress of CO2 corrosion in oil/gas field exploitation [J]. J. Southwest Petrol. Inst., 2004, 26(2): 42
[7] (李春福, 王斌, 张颖等. 油气田开发中CO2腐蚀研究进展 [J]. 西南石油学院学报, 2004, 26(2): 42)
[8] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
doi: 10.5006/0010-9312-31.5.177
[9] Davies D H, Burstein C T. The effects of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36: 416
doi: 10.5006/0010-9312-36.8.416
[10] Ogundele G I, White W E. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide [J]. Corrosion, 1986, 42: 71
doi: 10.5006/1.3584888
[11] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
doi: 10.1016/S0010-938X(98)00104-8
[12] Veawab A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions [J]. Ind. Eng. Chem. Res., 1999, 38: 3917
doi: 10.1021/ie9901630
[13] Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water [J]. Corros. Sci., 2010, 52: 2716
doi: 10.1016/j.corsci.2010.04.029
[14] Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels [A]. 39st NACE Annual Conference [C]. Houston, 1984: 39
[15] Schmitt G. CO2 corrosion of steels an attempt to range parameter and their effects [A]. 39st NACE Annual Conference [C]. Houston, 1984: 1
[16] Xia Z, Chou K C, Szklarska-Smialowska Z. Pitting corrosion of carbon steel in CO2-containing NaCl brine [J]. Corrosion, 1989, 45: 636
doi: 10.5006/1.3579317
[17] Rlesenfeld F C, Blohm C L. Corrosion problems in gas purification units employing MEA solutions [J]. Petrol. Refiner, 1950, 29: 141
[18] Colet J L, Thevenot N, Nesic S. Role of conductive corrosion products in the protectiveness of corrosion layers [J]. Corrosion, 1998, 54: 194
doi: 10.5006/1.3284844
[19] Palacios C A, Shadley J R. Characteristics of corrosion scales on steels in a CO2-saturated NaCl brine [J]. Corrosion, 1991, 47: 122
doi: 10.5006/1.3585227
[20] Zhao G X, Chen C F, Lu M X, et al. The formation of product scale and mass transfer channels during CO2 corrosion [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 363
[20] (赵国仙, 陈长风, 路民旭等. CO2腐蚀的产物膜及膜中物质交换通道的形成 [J]. 中国腐蚀与防护学报, 2002, 22: 363)
[21] Sun J B, Sun C, Zhang G A, et al. Effect of water cut on the localized corrosion behavior of P110 tube steel in supercritical CO2/oil/water environment [J]. Corrosion, 2016, 72: 1470
doi: 10.5006/1926
[22] Wu S L, Cui Z D, He F, et al. Characterization of the surface film formed from carbon dioxide corrosion on N80 steel [J]. Mater. Lett., 2004, 58: 1076
doi: 10.1016/j.matlet.2003.08.020
[23] Liu W, Dou J J, Lu S L, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel [J]. Appl. Surf. Sci., 2016, 367: 438
doi: 10.1016/j.apsusc.2016.01.228
[24] Jiang X, Zheng Y G, Qu D R, et al. Effect of calcium ions on pitting corrosion and inhibition performance in CO2 corrosion of N80 steel [J]. Corros. Sci., 2006, 48: 3091
doi: 10.1016/j.corsci.2005.12.002
[25] Bai H T, Wang Y Q, Ma Y, et al. Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture [J]. Materials, 2018, 11: 1765
doi: 10.3390/ma11091765
[26] Sun J B, Liu W, Chang W, et al. Characteristics and formation mechanism of corrosion scales on low-chromium X65 steels in CO2 environment [J]. Acta Metall. Sin., 2009, 45: 84
[26] (孙建波, 柳伟, 常炜等. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制 [J]. 金属学报, 2009, 45: 84)
[27] Bai Z Q, Chen C F, Lu M X, et al. Analysis of EIS characteristics of CO2 corrosion of well tube steels with corrosion scales [J]. Appl. Surf. Sci., 2006, 252: 7578
doi: 10.1016/j.apsusc.2005.09.011
[28] Wu H B, Sun R Y, Wang L D, et al. Microstructure and CO2 corrosion resistance of low Cr X70 pipeline steel [J]. J. Shenyang Univ. Technol., 2012, 34: 273
[28] (武会宾, 孙锐艳, 王立东等. 低铬X70管线钢组织及其抗CO2腐蚀性能 [J]. 沈阳工业大学学报, 2012, 34: 273)
[29] Xu L N, Guo S Q, Chang W, et al. Corrosion of Cr bearing low alloy pipeline steel in CO2 environment at static and flowing conditions [J]. Appl. Surf. Sci., 2013, 270: 395
doi: 10.1016/j.apsusc.2013.01.036
[30] Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution [J]. J. Mater. Eng. Perform., 2011, 20: 1330
doi: 10.1007/s11665-010-9769-z
[31] Wei L, Gao K W, Li Q. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments [J]. Appl. Surf. Sci., 2018, 440: 524
doi: 10.1016/j.apsusc.2018.01.181
[32] Cheng Y P. Research on CO2 corrosion characteristics of gathering pipeline steel in the medium containing crude oil [D]. Qingdao: China University of Petroleum (East China), 2016
[32] (程远鹏. 含原油介质中集输管线钢CO2腐蚀特性研究 [D]. 青岛: 中国石油大学 (华东), 2016)
[33] Wei L, Pang X L, Liu C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment [J]. Corros. Sci., 2015, 100: 404
doi: 10.1016/j.corsci.2015.08.016
[34] Li J, Sun D B, Yu H Y, et al. EIS characteristics of anodic dissolution for P110 steel under CO2 environment [J]. Electrochemistry, 2001, 7: 120
[34] (李静, 孙冬柏, 俞宏英等. CO2环境中P110钢阳极溶解过程EIS特征 [J]. 电化学, 2001, 7: 120)
[35] Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2002, 38: 770
[35] (陈长风, 路民旭, 赵国仙等. N80钢CO2腐蚀电极过程交流阻抗分析 [J]. 金属学报, 2002, 38: 770)
[36] Tan Y J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. I. Multi-phase carbon dioxide corrosion [J]. Corros. Sci., 2001, 43: 1905
doi: 10.1016/S0010-938X(00)00190-6
[37] Zhao D W. Study on formation and characteristic of corrosion product layer of low-chronium steel [D]. Xi'an: Xi'an Shiyou University, 2010
[37] (赵大伟. 低Cr耐蚀材料表面腐蚀产物膜的形成和特性研究 [D]. 西安: 西安石油大学, 2010)
[38] Chen C F, Zhao G X, Yan M L, et al. Characteristics of CO2 corrosion scales on Cr-containing N80 steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 335
[38] (陈长风, 赵国仙, 严密林等. 含Cr油套管钢CO2腐蚀产物膜特征 [J]. 中国腐蚀与防护学报, 2002, 22: 335)
[39] Chen C F, Zhao G X, Lu M X, et al. Study of CO2 corrosion scales on N80 steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 143
[39] (陈长风, 赵国仙, 路民旭等. N80钢CO2腐蚀产物膜研究 [J]. 中国腐蚀与防护学报, 2002, 22: 143)
[40] Long F L, Zheng W J, Chen C F, et al. Influence of temperature, CO2 partial pressure, flow rate and pH value on uniform corrosion rate of X65 pipeline steel [J]. Corros. Prot., 2005, 26: 290
[40] (龙凤乐, 郑文军, 陈长风等. 温度、CO2分压、流速、pH值对X65管线钢CO2均匀腐蚀速率的影响规律 [J]. 腐蚀与防护, 2005, 26: 290)
[41] Chen C F, Lu M X, Zhao G X, et al. Electrochemical characteristics of CO2 corrosion of well tube steels with corrosion scales [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 139
[41] (陈长风, 路民旭, 赵国仙等. 腐蚀产物膜覆盖条件下油套管钢CO2腐蚀电化学特征 [J]. 中国腐蚀与防护学报, 2003, 23: 139)
[42] Chen C F, Lu M X, Zhao G X, et al. Behavior of CO2 pitting corrosion of N80 steel [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 21
[42] (陈长风, 路民旭, 赵国仙等. N80油管钢CO2腐蚀点蚀行为 [J]. 中国腐蚀与防护学报, 2003, 23: 21)
[43] Farelas F, Galicia M, Brown B, et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J]. Corros. Sci., 2010, 52: 509
doi: 10.1016/j.corsci.2009.10.007
[44] Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition [J]. Corros. Sci., 2017, 120: 107
doi: 10.1016/j.corsci.2017.02.012
[45] Chen C F, Lu M X, Zhao G X, et al. Mechanical properties of CO2 corrosion scale on N80 well tube steel [J]. Acta Metall. Sin., 2003, 39: 175
[45] (陈长风, 路民旭, 赵国仙等. N80油套管钢CO2腐蚀产物膜的力学性能 [J]. 金属学报, 2003, 39: 175)
[46] Ren C Q, Liu D X, Bai Z Q, et al. Study on mechanical properties of corrosion scale on surface of tubular steel N80 [J]. J. Mater. Eng., 2004, (8): 17
[46] (任呈强, 刘道新, 白真权等. N80油管钢腐蚀产物膜的力学性能研究 [J]. 材料工程, 2004, (8): 17)
[47] Yu F, Gao K W, Qiao L J, et al. Effect of temperature on the structure and mechanical properties of CO2 corrosion product films of N80 steel [J]. Corros. Prot., 2009, 30: 145
[47] (俞芳, 高克玮, 乔利杰等. 温度对N80钢CO2腐蚀产物膜结构和力学性能的影响 [J]. 腐蚀与防护, 2009, 30: 145)
[48] Yu F, Gao K W, Lu M X. Investigation of structure and mechanical properties of CO2 corrosion scale formed under various flow rates [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 401
[48] (俞芳, 高克玮, 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价 [J]. 中国腐蚀与防护学报, 2009, 29: 401)
[1] 雍兴跃,吉静,张雅琴,李栋梁,张占佳. 微/纳米力学技术对金属空泡腐蚀表层力学性质的定量表征[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.