Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 96-105    DOI: 10.11902/1005.4537.2018.188
  研究报告 本期目录 | 过刊浏览 |
基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能
夏俊捷1,牛红志2,刘敏3,曹华珍1,郑国渠1,伍廉奎1()
1. 浙江工业大学材料科学与工程学院 杭州 310014
2. 东北大学材料科学与工程学院 沈阳 110819
3. 国网浙江省电力有限公司电力科学研究院 杭州 310014
Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol
Junjie XIA1,Hongzhi NIU2,Min LIU3,Huazhen CAO1,Guoqu ZHENG1,Liankui WU1()
1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. College of Materials Science and Engineering, Northeast University, Shenyang 110819, China
3. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
全文: PDF(21526 KB)   HTML
摘要: 

采用电化学阳极氧化技术在含NH4F的乙二醇电解液中对Ti48Al5Nb合金进行阳极氧化处理,以获得富铝含氟阳极氧化膜。研究了阳极氧化处理对Ti48Al5Nb合金在1000 ℃空气中的氧化行为及氧化膜组成和结构的影响。结果表明:阳极氧化处理的Ti48Al5Nb合金经高温氧化后表面可形成连续、致密的Al2O3氧化膜,且氧化膜与基体具有良好结合力,有效阻止了氧向内扩散,进而显著提高了合金的抗高温氧化性能。经1000 ℃氧化100 h后,阳极氧化试样增重由未经阳极氧化处理试样的26.73 mg/cm2降至1.18 mg/cm2。同时,阳极氧化处理改变了合金的氧化机制,抑制了氧化膜/基体界面处富Nb层的出现。阳极氧化提高Ti48Al5Nb合金抗高温氧化性能是由于氧化膜中F在高温氧化过程中表现出的“卤素效应”所致。

关键词 钛铝合金阳极氧化卤素效应抗高温氧化    
Abstract

Ti48Al5Nb alloy was electrochemically anodized in electrolyte of ethylene glycol with NH4F to prepare anodic films containing fluorine and aluminum. The influence of anodization treatment on the oxidation behavior, the composition and structure of the oxide scale of the anodized Ti48Al5Nb alloy were then characterized. Results shown that a continuous and dense Al2O3 oxide scale will generate on the anodized Ti48Al5Nb alloy after high temperature oxidation. And this oxide scale has good adhesion with the substrate, therefore can efficiently prevent the inward diffusion of oxygen, resulting the enhanced high temperature oxidation resistance. After oxidation at 1000 ℃ for 100 h, the weight gain of the anodized Ti48Al5Nb alloy was dramatically decreased from 26.73 mg·cm-2 for the bare Ti48Al5Nb alloy to 1.18 mg·cm-2. Moreover, it is shown that anodization also changes the oxidation mechanism, leading to the disappearance of the Nb-enriched layer at the interface between the oxide scale and substrate. The enhanced high temperature oxidation of the anodized Ti48Al5Nb is derived from the halogen effect based on the fluorine compounds existed in the anodized film.

Key wordsTiAl alloy    anodization    halogen effect    high temperature oxidation
收稿日期: 2018-12-27     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(51501163);国家自然科学基金(51301140);浙江省自然科学基金(LY18E010005);浙江省科协“育才工程”培养计划(2017YCGC015)
通讯作者: 伍廉奎     E-mail: lkwu@zjut.edu.cn
Corresponding author: Liankui WU     E-mail: lkwu@zjut.edu.cn
作者简介: 夏俊捷,男,1993年生,硕士生

引用本文:

夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
Junjie XIA, Hongzhi NIU, Min LIU, Huazhen CAO, Guoqu ZHENG, Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 96-105.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.188      或      https://www.jcscp.org/CN/Y2019/V39/I2/96

图1  Ti48Al5Nb合金和阳极氧化Ti48Al5Nb合金表面微观形貌及EDS结果
图2  Ti48Al5Nb合金经阳极氧化后表面XPS谱
图3  未经和经过阳极氧化预处理的Ti48Al5Nb合金在1000 ℃下的氧化动力学曲线
图4  Ti48Al5Nb合金和阳极氧化Ti48Al5Nb合金经1000 °C氧化100 h后的XRD谱
图5  未经和经过阳极氧化预处理的Ti48Al5Nb合金在1000 ℃下氧化100 h后的表面微观形貌
图6  30 V电压下阳极氧化的Ti48Al5Nb合金在1000 ℃下氧化不同时间后的表面微观形貌
图7  Ti48Al5Nb合金经1000 ℃氧化100 h后的截面微观形貌及相应的EDS面扫描结果
图8  10 V电压下阳极氧化的Ti48Al5Nb合金经1000 ℃氧化100 h后的截面微观形貌及相应的EDS线扫描和面扫描结果
图9  30 V电压下阳极氧化的Ti48Al5Nb合金经1000 ℃氧化100 h后的截面微观形貌及相应的EDS线扫描和面扫描结果
图10  30 V电压下阳极氧化的Ti48Al5Nb合金经1000 ℃氧化100 h后的XPS谱
[1] Clemens H, Mayer S. Design,processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
[2] Zhang M M, Xin L, Ding X Y, et al. Corrosion resistance of alternately multilayered coating Ti/TiAlN on Ti-alloy Ti-6Al-4V beneath a solid NaCl film in atmosphere of water vapor and oxygen at 600 °C [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 29
[2] 张明明, 辛丽, 丁学勇等. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 29
[3] Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1116
[3] 彭小敏, 夏长清, 王志辉等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116
[4] Pflumm R, Friedle S, Schütze M. Oxidation protection of γ-TiAl-based alloys-A review [J]. Intermetallics, 2015, 56: 1
[5] Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review [J]. J. Alloy. Compd., 2016, 685: 784
[6] Pflumm R, Donchev A, Mayer S, et al. High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys [J]. Intermetallics, 2014, 53: 45
[7] Wu Y, Hagihara K, Umakoshi Y. Influence of Y-addition on the oxidation behavior of Al-rich γ-TiAl alloys [J]. Intermetallics, 2004, 12: 519
[8] Taniguchi S, Kuwayama T, Zhu Y C, et al. Influence of silicon ion implantation and post-implantation annealing on the oxidation behaviour of TiAl under thermal cycle conditions [J]. Mater. Sci. Eng., 2000, A277: 229
[9] Li X Y, Taniguchi S, Matsunaga Y, et al. Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy [J]. Intermetallics, 2003, 11: 143
[10] Shida Y, Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air [J]. Oxid. Met., 1996, 45: 197
[11] Shen Y, Ding X F, Wang F G, et al. High-temperature oxidation resistance of high-Nb TiAl-based alloy [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 203
[11] 沈勇, 丁晓非, 王富岗等. 高铌TiAl基合金高温抗氧化性能研究 [J]. 中国腐蚀与防护学报, 2004, 24: 203
[12] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
[13] Varma S K, Chan A, Mahapatra B N. Static and cyclic oxidation of Ti-44Al and Ti-44Al-xNb alloys [J]. Oxid. Met., 2001, 55: 423
[14] Jiang H R, Hirohasi M, Lu Y, et al. Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al [J]. Scr. Mater., 2002, 46: 639
[15] Wang D S, Tian Z J, Chen Z Y, et al. High-temperature oxidation resistance coatings on TiAl alloy surface [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 1
[15] 王东生, 田宗军, 陈志勇等. TiAl合金表面抗高温氧化涂层研究 [J]. 中国腐蚀与防护学报, 2009, 29: 1
[16] Shen M L, Zhu S L, Wang F H. Formation kinetics of multi-layered interfacial zone between γ-TiAl and glass-ceramic coatings via interfacial reactions at 1000 °C [J]. Corros. Sci., 2015, 91: 341
[17] Schütze M. The role of surface protection for high-temperature performance of TiAl alloys [J]. JOM, 2017, 69: 2602
[18] Friedle S, Pflumm R, Seyeux A, et al. ToF-SIMS study on the initial stages of the halogen effect in the oxidation of TiAl alloys [J]. Oxid. Met., 2018, 89: 123
[19] Friedle S, Laska N, Braun R, et al. Oxidation behaviour of a fluorinated beta-stabilized γ-TiAl alloy with thermal barrier coatings in H2O-and SO2-containing atmospheres [J]. Corros. Sci., 2015, 92: 280
[20] Donchev A, Richter E, Schütze M, et al. Improving the oxidation resistance of TiAl-alloys with fluorine [J]. J. Alloy. Compd., 2008, 452: 7
[21] Schütze M, Schumacher G, Dettenwanger F, et al. The halogen effect in the oxidation of intermetallic titanium aluminides [J]. Corros. Sci., 2002, 44: 303
[22] Donchev A, Gleeson B, Schütze M. Thermodynamic considerations of the beneficial effect of halogens on the oxidation resistance of TiAl-based alloys [J]. Intermetallics, 2003, 11: 387
[23] Mo M H, Wu L K, Cao H Z, et al. Improvement of the high temperature oxidation resistance of Ti-50Al at 1000 ℃ by anodizing in ethylene glycol/BmimPF6 solution [J]. Surf. Coat. Technol., 2016, 286: 215
[24] Mo M H, Wu L K, Cao H Z, et al. High temperature oxidation behavior and anti-oxidation mechanism of Ti-50Al anodized in ionic liquid [J]. Surf. Coat. Technol., 2016, 307: 190
[25] Mo M H, Wu L K, Cao H Z, et al. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization [J]. Appl. Surf. Sci., 2017, 407: 246
[26] Wu L K, Xia J J, Cao H Z, et al. Improving the high-temperature oxidation resistance of TiAl alloy by anodizing in Methanol/NaF solution [J]. Oxid. Met., 2018, 90: 617
[27] Norasetthekul S, Park P Y, Baik K H, et al. Dry etch chemistries for TiO2 thin films [J]. Appl. Surf. Sci., 2001, 185: 27
[1] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[4] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[5] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[6] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[7] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[8] 石建敏, 张玲, 陈静, 沈春雷, 雷家荣, 周晓松. 乏燃料贮存环境中Al-B4C复合材料的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 419-424.
[9] 张勤杰,姚文红,贺本林,葛洪仑,孙苗,刘威,曲俊,王玮. 阳极氧化法制备TiO2膜在模拟深海热液区的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(1): 23-28.
[10] 裴和中,尹作升,张国亮,刘远勇. 2024与2124铝合金电偶腐蚀行为的对比研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 133-136.
[11] 刘妍,卫中领,杨富巍,张昭,曹发和,盛慧博. 电解液组成对镁合金阳极氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 255-259.
[12] 韩喻 谢凯. 图案化限域铝阳极氧化方法研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 104-108.
[13] 王东生 田宗军 陈志勇 沈理达 吴红艳 张平则 刘志东 徐重 黄因慧. TiAl合金表面抗高温氧化涂层研究[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[14] 钱建刚; 王纯; 李荻 . 镁合金阳极氧化膜在NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(4): 210-214 .
[15] 周玲伶; 易丹青; 邓姝皓; 王斌 . 镁合金环保型阳极氧化工艺研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 176-179 .