Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 69-73    DOI: 10.11902/1005.4537.2016.194
  研究报告 本期目录 | 过刊浏览 |
四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为
肖斌1,向军淮1,2(),张洪华1,2
1 江西科技师范大学材料与机电学院 南昌 330013
2 江西科技师范大学 江西省材料表面工程重点实验室 南昌 330013
Cyclic and Static Oxidation Behavior of Fe-Cu-Ni-Al Alloy at 900 ℃
Bin XIAO1,Junhuai XIANG1,2(),Honghua ZHANG1,2
1 School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
2 Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
全文: PDF(731 KB)   HTML
摘要: 

研究了Fe-65Cu-15Ni-5Al和Fe-45Cu-15Ni-5Al两种四元合金在900 ℃的恒温和循环氧化行为。在恒温氧化条件下,Fe-65Cu-15Ni-5Al合金的氧化速率低于Fe-45Cu-15Ni-5Al合金的;Fe-65Cu-15Ni-5Al合金的氧化动力学前期符合抛物线规律,后期为线性规律,Fe-45Cu-15Ni-5Al合金的氧化动力学符合抛物线规律。然而,在循环氧化条件下,Fe-65Cu-15Ni-5Al合金的氧化速率却高于Fe-45Cu-15Ni-5Al合金的。两种合金在恒温及循环氧化条件下,最外层都形成了以CuO为主的厚氧化层,中间层由Fe、Ni和Al的氧化物以及它们之间形成的复合氧化物组成。除了Fe-65Cu-15Ni-5Al合金在恒温条件下不发生内氧化外,其余情况内层都有不连续的Al2O3层形成,Al2O3层内侧发生了Al的内氧化。由于在循环氧化条件下,内层的Al2O3层在应力作用下容易破裂,富铜的Fe-65Cu-15Ni-5Al合金腐蚀速率大大高于Fe-45Cu-15Ni-5Al合金的。但是在恒温氧化条件下,富铜的Fe-65Cu-15Ni-5Al合金α相中的Al含量已达到形成保护性外氧化膜所需的临界浓度,因而比Fe-45Cu-15Ni-5Al合金具有更好的抗高温氧化能力。

关键词 Fe-Cu-Ni-Al循环氧化恒温氧化    
Abstract

The static and cyclic oxidation behavior of Fe-65Cu-15Ni-5Al and Fe-45Cu-15Ni-5Al alloyshas been investigated in air at 900 ℃ respectively. In the case of static oxidation, the oxidation rate of Fe-65Cu-15Ni-5Al is much lower than that of Fe-45Cu-15Ni-5Al. The oxidation kinetics of Fe-65Cu-15Ni-5Al obeys parabolic law during the first oxidation stage, followed by a linear law, while that of Fe-45Cu-15Ni-5Al obeys parabolic law in the whole oxidation period. However, In the case of cyclic oxidation, Fe-65Cu-15Ni-5Al shows a much faster oxidation rate than Fe-45Cu-15Ni-5Al. For the above two cases, the formed scales are both composed of an outermost thick CuO layer, a middle layer is mainly composed of mixture of oxides of Fe, Ni and Al, together with their compounds. Internal oxidation only occurs for the Fe-65Cu-15Ni-5Al alloy statically oxidized. While in other cases, discontinuous inner layer of Al2O3 is present, which is connected with the internal oxidation region of Al. In the case of cyclic oxidation, the scale of inner Al2O3 layer of Cu-rich Fe-65Cu-15Ni-5Al alloy has undergone rupture easily due to the presence of high stress, resulting in high corrosion rate. On the contrary, in the case of static oxidation at 900 ℃ the critical Al content needed to form a protective outer Al2O3 layer in the α phase has been reached, which can fairly well explain its better oxidation resistant than Fe-45Cu-15Ni-5Al.

Key wordsFe-Cu-Ni-Al    cyclic oxidation    constant temperature oxidation
收稿日期: 2016-10-01     
基金资助:江西省自然科学基金 (20132BAB206015和20122BAB216018) 及江西省教育厅科技研究青年基金 (GJJ150811)

引用本文:

肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
Bin XIAO, Junhuai XIANG, Honghua ZHANG. Cyclic and Static Oxidation Behavior of Fe-Cu-Ni-Al Alloy at 900 ℃. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 69-73.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.194      或      https://www.jcscp.org/CN/Y2017/V37/I1/69

图1  Fe-45Cu-15Ni-5Al和Fe-65Cu-15Ni-5Al合金在900 ℃恒温氧化24 h的动力学曲线和动力学曲线的抛物线
图2  Fe-45Cu-15Ni-5Al和Fe-65Cu-15Ni-5Al合金在900 ℃循环氧化24 h的动力学曲线和动力学曲线的抛物线
图3  Fe-45Cu-15Ni-5Al和Fe-65Cu-15Ni-5Al合金在900 ℃恒温氧化24 h后的截面形貌
图4  Fe-45Cu-15Ni-5Al和Fe-65Cu-15Ni-5Al合金在900 ℃循环氧化24 h后的截面形貌
图5  Fe-65Cu-15Ni-5Al合金在900 ℃/0.1 MPa循环氧化8 h后的截面形貌
[1] Yang Z, Lu J T, Zhao X B, et al.Effect of rare earth elements on high temperature oxidation of metals[J]. J. Chin. Rare Earth Soc., 2014, 32: 641
[1] (杨珍, 鲁金涛, 赵新宝等. 稀土元素对合金高温氧化的影响[J]. 中国稀土学报, 2014, 32: 641)
[2] Guo H B, Zhang T, Wang S X, et al.Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 ℃[J]. Corros. Sci., 2011, 53: 2228
[3] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Met., 1995, 44: 113
[4] Tien J K, Caulfield T.Superalloys, Supercomposites and Superceramics II [M]. New York: Academics Press, 1989
[5] Lee S E, Jung S, Jang O J, et al.Oxidation behavior of Fe-15Cr-4Al alloy at high temperatures[J]. Sci. Adv. Mater., 2015, 7: 1475
[6] Zhang H H, Xiang J H, Wang W, et al.High temperature oxidation of coatings prepared on Fe-15Cu-10Al alloys with controlled microstructures[J]. Adv. Sci. Lett., 2012, 14: 352
[7] Sims C T, Stoloff N S, Hagel W C.Superalloys II [M]. New York: Academics Press, 1987
[8] Gesmundo F, Niu Y, Oquab D, et al.The air oxidation of two-phase Fe-Cu alloys at 600~800 ℃[J]. Oxid. Met., 1998, 49: 115
[9] Xiang J H, Niu Y, Gesmundo F.The oxidation of two ternary Fe-Cu-10 at.% Al alloys in 1 atm of pure O2 at 800~900 ℃[J]. Corros. Sci., 2005, 47: 1493
[10] Xiang J H, Niu Y, Gesmundo F.The oxidation of two ternary Fe-Cu-5at.% Al alloys in 1 atm of pure O2 at 800 ℃[J]. Oxid. Met., 2004, 61: 403
[11] Niu Y, Li Y S, Gesmundo F.High temperature scaling of two-phase Fe-Cu alloys under low oxygen pressures[J]. Corros. Sci., 2000, 42: 165
[12] Li M S.High Temperature Corrosion [M]. Beijing: Metallurgical Industry Press, 2001: 56
[12] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 56)
[13] Li Q, Zhou K C, Zhou T, et al.Oxidation behavior of Ni-Cu-Fe-Al alloys at 850 ℃[J]. Mater. Sci. Eng. Powder Metall., 2009, 14: 231
[13] (李倩, 周科朝, 周涛等. Ni-Cu-Fe-Al合金在850 ℃空气中的氧化行为[J]. 粉末冶金材料科学与工程, 2009, 14: 231)
[14] Xiang J H, Niu Y, Zhao Z L, et al.Oxidation of ternary Cu-60Ni-10Al and Cu-60Ni-15Al Alloys at 800 ℃[J]. Rare Met. Mater. Eng., 2005, 34: 1275
[14] (向军淮, 牛焱, 赵泽亮等. Cu-60Ni-10Al和Cu-60Ni-15Al三元合金在800 ℃的高温氧化行为[J]. 稀有金属材料与工程, 2005, 34: 1275)
[15] Pettit F S.Oxidation mechanisms for nickel-aluminum alloys at temperatures between 900 ℃ and 1300 ℃[J]. Trans. Metall. Soc. AIME, 1967, 239: 1296
[1] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[2] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[3] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[4] 陈倩,辛丽,滕英元,朱圣龙,王福会. 氮化物涂层对钛合金抗循环氧化性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 7-12.
[5] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[6] 金光熙; 乔利杰; 高克玮; 桥本健纪 ; 褚武扬 . Al60Mn13Ti25V2金属间化合物的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .
[7] 宋复斌; 张琦 . 常温腐蚀对Al-Si涂层循环氧化行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(3): 183-186 .
[8] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .
[9] 袁福河; 孙晓峰; 管恒荣 . 钴基高温合金的循环氧化行为研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 115-117 .
[10] 耿树江; 王福会; 朱圣龙 . 溅射纳米晶IN738合金涂层的抗循环氧化行为[J]. 中国腐蚀与防护学报, 2001, 21(6): 334-339 .
[11] 胡武生;李铁藩;沈嘉年. 几种Ni-Cr-Al墓低偏析高温合金的抗氧化性能研究[J]. 中国腐蚀与防护学报, 1996, 16(4): 293-297.