Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 407-414    DOI: 10.11902/1005.4537.2015.186
  本期目录 | 过刊浏览 |
中央空调环保复合型阻垢缓蚀剂的筛选及性能研究
代陈林1,李茂东2,杨波2,乔越1,朱志平1()
1. 长沙理工大学化学与生物工程学院 长沙 410114
2. 广州特种承压设备检测研究院 广州 510050
Performance of Environmentally Friendly Corrosion- and Scaling-Inhibitor for Central Air Conditioner Cooling Water
Chenlin DAI1,Maodong LI2,Bo YANG2,Yue QIAO1(),Zhiping ZHU1
1. School of Chemical and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
2. Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510050, China
全文: PDF(2914 KB)   HTML
摘要: 

通过筛选和优化得到最佳配方的复合型水处理剂,该复合配方的组成为水解聚马来酸16 mg/L+表面活性剂1.5 mg/L+月桂酰基肌氨酸钠75 mg/L+唑类2.0 mg/L。采用静态阻垢法、旋转挂片法和极化曲线法对复合型水处理剂的阻垢缓蚀性能进行了研究,采用扫描电镜对腐蚀试片和垢样的形貌进行了观察。结果表明,复合药剂的阻垢率高达95.70%,对A3碳钢和T2紫铜的缓蚀率分别达到95.58%和93.25%,是一种性能优良的阻垢缓蚀剂。复合药剂通过吸附在CaCO3晶面的活性生长点,使晶格发生扭曲,以达到阻垢效果,复合药剂对A3碳钢是一种抑制阳极极化为主的混合型缓蚀剂;对T2紫铜是一种抑制阳极极化的阳极型缓蚀剂。

关键词 中央空调循环冷却水复合型水处理剂水解聚马来酸酐月桂酰基肌氨酸钠    
Abstract

In order to solve the problems of scaling and corrosion of copper and iron in cooling water system for central air conditioner, an optimal compound water treatment agent was developed by screening assay. The compound agent consists of HPMA 16 mg/L+ Surfactant 1.5 mg/L+SLS 75 mg/L+Azole 2.0 mg/L. The performance of corrosion- and scaling- inhibition of the compound agent was characterized by immersion test, rotary coupon test, polarization curve measurement and SEM. Results show that, the compound water treatment agent is a kind of high performance agent as scaling- and corrosion-inhibitor with scaling-inhibition rate as high as 95.70%, while its corrosion-inhibition efficiencies for A3 carbon steel and T2 red copper were 95.58% and 93.25%, respectively. The scaling inhibition effect of the compound agent may be ascribed to the selective adsorption on the active growing points on the CaCO3 crystal facets, which then resulted in distortion of the crystal lattice. The compound agent is a kind of mixing type inhibitor for A3 carbon steel, while a kind of anodic inhibitor for red copper, which mainly suppressed the anodic polarization.

Key wordscentral air conditioner cooling water    compound water treatment agent    HPMA    sodium N-Lauroyl sarcosinate
    
基金资助:国家质检总局科技项目 (2014QK168) 资助

引用本文:

代陈林,李茂东,杨波,乔越,朱志平. 中央空调环保复合型阻垢缓蚀剂的筛选及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 407-414.
Chenlin DAI, Maodong LI, Bo YANG, Yue QIAO, Zhiping ZHU. Performance of Environmentally Friendly Corrosion- and Scaling-Inhibitor for Central Air Conditioner Cooling Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 407-414.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.186      或      https://www.jcscp.org/CN/Y2016/V36/I5/407

图1  单一药剂的阻垢效果图
图2  STA与HPMA复配后的阻垢效果
图3  ATC与SLS复配后的缓蚀效果
Type of specimen Corrosion rate / mma-1
ST SM SG SC SH SLS Blank
A3 0.2026 0.2103 0.0554 0.5275 0.3996 0.0288 0.6155
T2 0.0073 0.0039 0.0136 0.0087 0.0092 0.0039 0.0311
表1  添加单一药剂时的腐蚀实验结果
Level Factor
A (HPMA)mgL-1 B (STA)mgL-1 C (ATC)mgL-1 D (TTA)mgL-1
1 16 1.0 75 1.0
2 20 1.5 100 2.0
表2  四因素两水平正交试验参数设置
No. A B C D Scale inhibition rate / % Corrosion inhibition rate of A3 / % Corrosion inhibition rate of T2 / %
1 1 1 1 1 93.68 94.51 91.07
2 1 1 2 1 93.26 96.79 92.72
3 1 2 2 2 95.51 96.92 94.76
4 1 2 1 2 95.70 95.43 93.09
5 2 1 2 2 96.81 97.03 94.82
6 2 1 2 1 96.77 96.87 92.83
7 2 2 1 1 97.23 94.79 91.29
8 2 2 1 2 97.28 95.68 93.17
表3  正交试验结果
Parameter A B C D
k1 94.54 95.13 95.97 95.24
k2 97.02 96.43 95.59 96.32
R 2.48 1.3 -0.38 1.08
表4  阻垢正交试验结果分析表
Parameter A B C D
k1 95.91 96.30 95.10 95.74
k2 96.09 95.71 96.90 96.27
R 0.18 -0.59 1.8 0.53
表5  A3碳钢缓蚀正交试验结果分析表
Parameter A B C D
k1 92.91 92.85 92.16 91.98
k2 93.03 93.08 93.78 93.96
R 0.11 0.23 1.62 1.98
表6  T2紫铜缓蚀正交试验结果分析表
图4  HPMA的用量对复合配方阻垢性能的影响
图5  SLS用量对复合配方缓蚀效果的影响
图6  未添加和添加复合药剂的垢样的SEM像
图7  腐蚀试片的金相显微像
Types of specimen Corrosion rate / mma-1 Corrosion inhibition rate%
No inhibitor Inhibitor
A3 0.6155 0.0272 95.58%
T2 0.0311 0.0021 93.25%
表7  复合配方的缓蚀实验结果
图8  A3碳钢和T2紫铜的极化曲线
Type of electrode Ecorr / mV bc ba Icorr / μAcm-2 η / %
A3-No inhibitor -499 3.191 6.136 16.67 ---
A3-With inhibitor -7 3.947 7.271 0.7787 95.33
T2-No inhibitor 1 3.422 9.174 8.264 ---
T2-With inhibitor 220 1.393 10.366 0.6822 91.74
表8  极化曲线参数
[1] Wu S H, Li M D.Current situation and development of water treatment technology for the central air conditioning[J]. Refrigeration, 2004, 23(2): 34
[1] (吴淑焕, 李茂东. 中央空调水处理技术现状与发展[J]. 制冷, 2004, 23(2): 34)
[2] Luo H G, Shi R G.Chemical treatment in the central air conditioning water system[J]. Contami. Control Air-Cond. Technol., 2011, (2): 69
[2] (罗洪国, 石荣桂. 中央空调水系统的化学处理[J]. 洁净与空调技术, 2011, (2): 69)
[3] Ning S Q, Zhang H T.Research on the cooling water treatment in central air conditioning system[J]. China Sci. Technol. Inform., 2012, (1): 105
[3] (宁守庆, 张洪涛. 中央空调循环冷却水处理的研究[J]. 中国科技信息, 2012, (1): 105)
[4] Amjad Z.Effect of surfactants on gypsum scale inhibition by polymeric inhibitors[J]. Desalin. Water Treat., 2011, 36(1-3): 270
[5] Kuang Y F, Cheng F, Xie A.Molybdate- based corrosion inhibitor system for carbon steel in sea ice melt-water[J]. Desalin. Water Treat., 2013, 51(16-18): 3133
[6] Baraka-Lokmane S, Sorbie K, Poisson N, et al.Can green scale inhibitors replace phosphonate scale inhibitors: Carbonate coreflooding experi-ments[J]. Petrol. Sci. Technol., 2009, 27(4): 427
[7] GB16632-2008. Determination of scale inhibitor performance for water treatment agents - Calcium carbonate precipitation method[S]
[7] (GB16632-2008. 水处理剂阻垢性能的测定-碳酸钙沉积法[S])
[8] GB18175-2000. Determination of corrosion inhibitor performance water treatment agents-Rotary coupon method[S]
[8] (GB18175-2000. 水处理剂缓蚀性能的测定-旋转挂片法[S])
[9] Touir R, Cenoui M, El Bakri M, et al.Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water[J]. Corros. Sci., 2008, 50(6): 1530
[10] Abd-El-Khalek D E, Abd-El-Nabey B A. Evaluation of sodium hexametaphosphate as scale and corrosion inhibitor in cooling water using electrochemical techniques[J]. Desalination, 2013, 311: 227
[11] Zhang Y F.Preparation and investigation on the inhibition performance of N-Laurel-L-Alanine [D]. Nanchang: Jiangxi University of Science and Technology, 2009
[11] (张燕芬. N-月桂酰基氨基酸类缓蚀剂的制备及其缓蚀性能研究[D]. 南昌: 江西理工大学, 2009)
[12] Guo X H, Wang K, Hu B S, et al.Research progress in corrosion inhibition mechanism of amino acids[J]. Corros. Sci. Prot. Technol., 2013, 25(1): 63
[12] (郭学辉, 王康, 胡百顺等. 氨基酸类缓蚀剂缓蚀机理研究进展[J]. 腐蚀科学与防护技术, 2013, 25(1): 63)
[13] Hu X J, Liu Z F, Wu X L, et al.Development and performances of environmentally friendly corrosion and scale inhibitor[J]. Water Treat. Technol., 2010, 36(3): 38
[13] (胡晓静, 刘振法, 武秀丽等. 环境友好型缓蚀阻垢剂的研制及性能研究[J]. 水处理技术, 2010, 36(3): 38)
[14] Zhou B Q, Xia H H, Ji X H, et al.Influence of surfactants of scale inhibition on HPMA[J]. Water Treat. Technol., 2006, 32(9): 73
[14] (周柏青, 夏桓桓, 姬晓慧等. 表面活性剂对HPMA阻垢分散性能的影响 [J]. 水处理技术, 2006, 32(9): 73)
[15] Shao Z B, Zhang L J, Gu Y T.Effect of surface active agent on performance of corrosion inhibition and scale prohibition of HPMA and ATMP[J]. Corros. Sci. Prot. Technol., 2001, 13(2): 112
[15] (邵忠宝, 张丽君, 顾玉涛. 表面活性剂对HPMA和ATMP缓蚀阻垢性能的影响[J]. 腐蚀科学与防护技术, 2001, 13(2): 112)
[16] Feng G N.Improvement of the evaluation method of scale inhibitor and influence of additives on process of CaCO3 precipitation [D]. Wuhan: Huazhong University of Science and Technology, 2005
[16] (冯改宁. 阻垢剂性能评价方法的改进以及添加剂对CaCO3结垢过程的影响 [D]. 武汉: 华中科技大学, 2005)
[17] Liu J H, Jiang E, Gong B, et al.Corrosion inhibition properties of TTA and phosphate on copper and stainless steel.[J]. Atom. Energy Sci. Technol., 2013, 47(12): 2195
[17] (刘金华, 姜峨, 龚宾等. 甲基苯骈三氮唑和磷酸钠对铜及不锈钢的缓蚀性能研究[J]. 原子能科学技术, 2013, 47(12): 2195)
[18] Liu J H, Gong B, Jiang E, et al.Research of electrochemistry behavior of corrosion inhibitor for KAA of Tianwan NPP.[J]. Nucl. Power Eng., 2013, 34(5): 160
[18] (刘金华, 龚宾, 姜峨等. 田湾核电站核岛设备冷却水系统缓蚀剂的电化学行为研究[J]. 核动力工程, 2013, 34(5): 160)
[19] Huang L J.The study of inhibitory capability and inhibitory mechanism of green copper corrosion inhibitor in seawater [D]. Qingdao: Ocean University of China, 2008
[19] (黄丽娟. 海水介质绿色铜缓蚀剂性能与机理的研究 [D]. 青岛: 中国海洋大学, 2008)
[20] Xia M Z, Lei W, Dai L H, et al.Study of the mechanism of phosphonate scale inhibitors against calcium carbonate scale[J]. Acta Chim. Sin., 2010, 68(2): 143
[20] (夏明珠, 雷武, 戴林宏等. 膦系阻垢剂对碳酸钙阻垢机理的研究[J]. 化学学报, 2010, 68(2): 143)
[21] Hu L C.Investigation on corrosion inhibition and mechanism of triazole compounds for copper in synthetic seawater [D]. Chongqing: Chongqing University, 2010
[21] (胡李超. 模拟海水中三氮唑类铜缓蚀剂的性能及机理研究 [D]. 重庆: 重庆大学, 2010)
No related articles found!