Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 433-438    DOI: 10.11902/1005.4537.2013.195
  本期目录 | 过刊浏览 |
AISI 316不锈钢腐蚀磨损交互作用的研究
陈君1,2(), 李全安1, 张清1, 王建章2, 阎逢元2
1. 河南科技大学材料科学与工程学院 洛阳 471023
2. 中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 730000
Sliding Wear-corrosion Performance of AISI 316 Stainless Steel Against Alumina in Artificial Seawater
CHEN Jun1,2(), LI Quanan1, ZHANG Qing1, WANG Jianzhang2, YAN Fengyuan2
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. State Key laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
全文: PDF(2237 KB)   HTML
摘要: 

采用电化学方法、微观形貌观察以及失重法分析研究了AISI 316 不锈钢和Al2O3陶瓷摩擦副在模拟海水中的腐蚀磨损行为,探讨了摩擦对不锈钢腐蚀行为的影响以及腐蚀磨损交互作用。结果表明,在本实验条件下摩擦作用显著增加了AISI 316不锈钢的腐蚀倾向,其腐蚀率显著增加。纯磨损量占总腐蚀磨损量的76%~88%,材料的损失主要是由摩擦作用所引起,腐蚀磨损交互作用量占总腐蚀磨损量的12%~24%,腐蚀磨损交互作用是影响材料耐磨蚀性能的重要因素。

关键词 AISI 316不锈钢腐蚀磨损交互作用海水    
Abstract

The sliding wear-corrosion of AISI 316 stainless steel against alumina in artificial seawater was investigated by means of weight loss test, electrochemical measurement and microstructure examination. The result shows that in the presence of wear the corrosion rate of AISI 316 stainless steel is obviously enhanced; the weight loss of the steel caused by corrosion-wear is higher than that under cathodic protection; the weight loss due to merely mechanical wear amounts to ca 76%~88% of the total weight loss of the wear-corrosion, which shows that the pure mechanical wear is the main factor in corrosion-wear process; however it may not be ignored that the weight loss corresponding to the synergistic effect between corrosion and wear amounts to ca 12%~24% of the total weight loss of the wear-corrosion.

Key wordsAISI 316 stainless steel    tribocorrosion    synergistic interaction    seawater
    
ZTFLH:  TH11.3  
基金资助:固体润滑国家重点实验室开发课题项目(LSL-1310),河南省高校科技创新团队支持计划项目(2012IRTSTHN008)和有色金属共性技术河南省协同创新中心资助
作者简介: null

陈君,男,1982年生,博士,副教授,研究方向为金属材料的腐蚀磨损

引用本文:

陈君, 李全安, 张清, 王建章, 阎逢元. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438.
Jun CHEN, Quanan LI, Qing ZHANG, Jianzhang WANG, Fengyuan YAN. Sliding Wear-corrosion Performance of AISI 316 Stainless Steel Against Alumina in Artificial Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 433-438.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.195      或      https://www.jcscp.org/CN/Y2014/V34/I5/433

图1  腐蚀磨损装置示意图
图2  不同载荷和转速条件下摩擦系数和开路电位随时间的变化曲线
图3  静态以及摩擦过程中的极化曲线
Condition Ecorr / V icorr / mAcm-2
Static corrosion -0.63 10.89×10-3
50 N, 100 r/min -0.67 1.65
50 N, 200 r/min -0.70 1.79
100 N, 100 r/min -0.69 1.71
100 N, 200 r/min -0.72 1.92
表1  AISI316不锈钢在静态以及摩擦过程中的icorr和Ecorr
图4  不同条件下腐蚀磨损过程中各组成部分以及所占的比例
Condition VT
mm3
Vm
mm3
Vmc
mm3
Vcm
mm3
?V
mm3
?V / V Vm / V
50 N, 100 r/min 33.3 25.4 1.46 6.45 7.91 24% 76%
50 N, 200 r/min 72.4 58.2 1.58 12.6 14.2 20% 80%
100 N, 100 r/min 89.3 75.8 1.5 12 13.5 15% 85%
100 N, 200 r/min 185.4 163.3 1.7 20.4 22.1 12% 88%
表2  腐蚀磨损过程中各组成部分以及所占的比例
图5  AISI 316不锈钢磨损表面的SEM像
[1] Stemp M, Mischler S, Landolt D. The effect of contact configuration on the tribocorrosion of stainless steel in reciprocating sliding under potentiostatic control[J]. Corros. Sci., 2003, 45(3): 625-640
[2] Henry P, Takadoum J, Berçot P. Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media[J]. Corros. Sci., 2009, 51(6): 1308-1314
[3] Diomidis N, Celis J P, Ponthiaux P, et al. Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion-wear components and effect of contact area[J]. Wear, 2010, 269(1/2): 93-103
[4] Bello J O, Wood R J K, Wharton J A. Synergistic effects of micro-abrasion-corrosion of UNSS30403, S31603 and S32760 stainless steels[J]. Wear, 2007, 263: 149-159
[5] Li Y, Qu L, Wang F. The electrochemical corrosion behavior of TiN and (Ti, Al) N coatings in acid and salt solution[J]. Corros. Sci., 2003, 45(7): 1367-1381
[6] Chen J, Yan F. Tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(6): 1356-1365
[7] Henry P, Takadoum J, Bercot P. Depassivation of some metals by sliding friction[J]. Corros. Sci., 2011, 53(1): 320-328
[8] Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution[J]. Mater. Chem. Phys., 2011, 129(1/2): 138-147
[9] Iwabuchi A, Lee J W, Uchidate M. Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks' solution[J]. Wear, 2007, 263(1-6): 492-500
[10] Iwabuchi A, Sonoda T, Yashiro H, et al. Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear[J]. Wear, 1999, 225-229<br/>(Part 1): 181-189
[11] Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism[J]. Wear, 1995, 181-183<br/>(Part 2):476-484
[12] Chen J, Wang J Z, Chen B B, et al. Tribocorrosion behaviors of inconel 625 alloy sliding against 316 steel in seawater[J]. Tribol. Trans., 2011, 54(4): 514-522
[13] Salasi M, Stachowiak G B, Stachowiak G W. New experimental rig to investigate abrasive-corrosive characteristics of metals in aqueous media[J]. Tribol. Lett., 2010, 40(1): 71-84
[14] Shintani D, Ishida T, Izumi H, et al. XPS studies on passive film formed on stainless steel in a high-temperature and high-pressure methanol solution containing chloride ions[J]. Corros. Sci., 2008, 50(10): 2840-2845
[15] Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: A critical appraisal[J]. Electrochim. Acta, 2001, 46(24/25): 3913-3929
[16] Lu X C, Li S Z, Jiang X X, et al. Effect of polarization potential on corrosive wear and friction behavior of a duplex stainless steel in sulfuric acid solution[J]. Tribology, 1996, 16(2): 105-111
[16] (路新春, 李诗卓, 姜晓霞等. 外加极化电位对双相不锈钢在硫酸介质中腐蚀磨损行为及摩擦性能的影响[J]. 摩擦学学报, 1996, 16(2): 105-111)
[17] Bi H Y, Li S Z, Jiang X X. The Effect of deformation streng-thening on wear resistance of stainless steel in dry sliding and corrosive environment[J]. Tribology, 1998, 18(4): 327-331
[17] (毕红运, 李诗卓, 姜晓霞. 不锈钢腐蚀磨损过程中形变强化能力的研究[J]. 摩擦学学报, 1998, 18(4): 327-331)
[18] Yang Y S, Qu J X, Shao H S. The interaction of corrosive wear of two metallic materials[J]. Tribology, 1996, 16(1): 47-53
[18] (杨院生, 曲敬信, 邵荷生. 两种金属材料腐蚀磨损的交互作用[J]. 摩擦学学报, 1996, 16(1): 47-53)
[19] Shipilov S A. Mechanisms for corrosion fatigue carck propagation[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 321-333
[19] (Shipilov S A. 腐蚀疲劳裂纹扩展的机理[J]. 中国腐蚀与防护学报, 2004, 24: 321-333)
[1] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[4] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[5] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[6] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[12] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[13] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[14] 王吉会,闫华杰,胡文彬. 钼酸盐插层锌铝铈水滑石的制备与缓蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.