Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 371-376    
  研究报告 本期目录 | 过刊浏览 |
覆有短期腐蚀产物膜的X80钢的电化学行为
梁平, 王莹
辽宁石油化工大学机械工程学院 抚顺 113001
Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion
LIANG Ping, WANG Ying
School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1472 KB)  
摘要: 将X80钢放入酸性鹰潭土壤模拟溶液中浸泡30 d使其表面形成短期腐蚀产物膜,采用SEM,EDS和XRD对腐蚀产物膜的表面形貌、元素和物相组成进行测试与分析,通过极化曲线和电化学阻抗方法考察腐蚀产物膜对X80钢电化学腐蚀行为的影响。结果表明:与X80裸钢相比,腐蚀产物膜作用下的X80钢的自腐蚀电位更负,自腐蚀电流密度更大。这是因为产物膜主要由Fe3O4β-FeOOH组成,短期形成的Fe3O4产物膜存在很多微小孔洞和微裂纹等缺陷,为溶液中侵蚀性Cl-的吸附和滞留提供了潜在场所,同时也增大了基体和腐蚀介质反应的有效面积;而产物膜中的β-FeOOH抗Cl-侵蚀作用很弱,且参与了阴极还原反应。这些因素的综合作用导致覆有短期腐蚀产物膜的X80钢在酸性土壤模拟溶液中表现出更大的腐蚀速率。
关键词 腐蚀产物膜X80钢电化学腐蚀行为鹰潭酸性土壤    
Abstract:A rust layer was formed on X80 pipeline steel in Yingtan acid soil simulated solution for 30 d, and the micrographs and element compositions of this rust layer were investigated by using SEM, EDS, and XRD. The electrochemical corrosion behavior of the X80 steel with short-term rust layer was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The results showed that, as compared with the X80 steel, the X80 steel with the rust layer possessed more negative free corrosion potential and larger free corrosion current density. This is because that short-term rust layer was composed of Fe3O4 and β-FeOOH, had a great number of microcracks and microvoids, which provided the sites for adsorbing of Cl- in the simulated solution. Moreover, these defects also increased the effective reaction areas for corrosion reactions. β-FeOOH could not prevent aggressive ions from inward penetration, and was reduced in the cathodic sites. These factors resulted in increasing of the corrosion rate of X80 steel with pre-formed rust layer in acid soil simulated solution.
Key wordsrust layer    X80 steel    electrochemical corrosion behavior    Yingtan acid soil
    
ZTFLH:  TG174.2  

引用本文:

梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
LIANG Ping, WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 371-376.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/371

[1] Li H L. Research development trends and prospects of steel tube for transmission pipeline of oil and gas [J]. Weld. Pipe Tube, 2004, 27(6): 1-11
(李鹤林. 油气输送钢管的发展动向与展望 [J]. 焊管, 2004, 27(6): 1-11)
[2] Kong J H, Guo B, Liu C M, et al. Research and development of high strength pipeline steel X80 [J]. Mater. Rev., 2004, 18(4): 23-27
(孔君华, 郭斌, 刘昌明等. 高钢级管线钢X80的研制与发展 [J]. 材料导报, 2004, 18(4): 23-27)
[3] Chen X, Du C W, Li X G, et al. Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil [J]. J. Petrochem. Univ., 2007, 20(4): 55-58
(陈旭, 杜翠薇, 李晓刚等. 含水率对X70 钢在鹰潭酸性土壤中腐蚀行为的影响 [J]. 石油化工高等学校学报, 2007, 20(4): 55-58)
[4] Tian L, Lv X Y, Wu D K. Welding training of the second west-east gas transportation pipeline project [J]. Elec. Weld. Mach., 2009, 39(5): 124-126
(田丽, 吕向阳, 吴大可. 西气东输二线管道工程焊工培训 [J]. 电焊机, 2009. 39(5): 124-126)
[5] Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2011, 47(11): 1434-1439
(刘智勇, 王长鹏, 杜翠薇等. 外加电位对X80管线钢在鹰潭酸性土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47(11): 1434-1439)
[6] Chen X, Wu M, He C, et al. The cyclic voltammogram behaviors of welded X80 pipeline in Yingtan simulated soil solution [J]. J. Petrochem. Univ., 2010, 23(3): 62-67
(陈旭, 吴明, 何川等. X80钢及其焊缝在鹰潭土壤模拟溶液中的循环伏安行为 [J]. 石油化工高等学校学报, 2010, 23(3): 62-67)
[7] Liu Z Y, Li X G, Zhang Y R, et al. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22(1): 58-64
[8] Wang F P, Kang W L, Jing H M. Fundaments, Methods and Applications of Corrosion Electrochemical [M]. Beijing: Chemical Industry Press, 2008, 218
(王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008, 218)
[9] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002, 46
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002, 46)
[10] Rubinstein I, Sabatanie E, Rishpon J. Electrochemical impedance analysis of polyaniline films on electrodes [J]. J. Electrochem. Soc., 1987, 134(12): 3078-3083
[11] Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere [J]. Corros. Sci., 2008, 50(2): 365-371
[12] Sun M, Xiao K, Dong C F, et al. Electrochemical behaviors of ultra high strength steels with corrosion products [J]. Acta Metall. Sin., 2011, 47(4): 442-448
(孙敏, 肖葵, 董超芳等. 覆腐蚀产物超高强度钢的电化学行为 [J]. 金属学报, 2011, 47(4): 442-448)
[13] Ohtsukat T, Komatsu T. Enhancement of electric conductivity of the rust layer by adsorption of water [J]. Corros. Sci., 2005, 47(10): 2571-2577
[14] Zhao G X, Chen C F, Lu M X, et al. The formation of product scale and mass transfer channels during corrosion [J]. J. Chin. Soc. Corros. Prot., 2002, 22(6): 200-204
(赵国仙, 陈长风, 路民旭等. CO2腐蚀的产物膜及膜中物质交换通道的形成 [J]. 中国腐蚀与防护学报, 2002, 22(6): 200-204)
[15] Zhang L J. The studies of the corrosion mechanism of X70 pipeline steel in the neutral solutions and its surface protection methods [D]. Hangzhou: Zhejing University, 2005
(张丽君. X70管线钢在中性介质中的腐蚀机理及其表面处理方法的研究 [D]. 杭州: 浙江大学, 2005)
[16] Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim. Acta, 2003, 48(23): 3551-3562
[1] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[2] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[3] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[4] 王帅星, 杜楠, 刘道新, 肖金华, 邓丹萍. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[5] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[6] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[7] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[8] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[9] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[10] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 王丽叶. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[11] 黄峰;曲炎淼;邓照军;刘静;郑超超;李晓刚. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为[J]. 中国腐蚀与防护学报, 2010, 30(1): 29-34.
[12] 俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[13] 李桐; 高克玮; 路民旭 . X65钢CO2腐蚀产物膜形成机理研究[J]. 中国腐蚀与防护学报, 2007, 27(6): 338-341 .
[14] 马文海; 裴晓含; 高飞; 高纯良 . N80钢在模拟深层气井水溶液中的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13 .
[15] 赵国仙; 吕祥鸿; 李鹤林; 路民旭 . 温度对P110钢CO2腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2005, 25(2): 93-96 .