Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 293-297    
  研究报告 本期目录 | 过刊浏览 |
埋地钢质管道交流杂散电流腐蚀规律研究
王新华1 杨国勇1 黄 海1 陈振华2 王丽梅3
1. 北京工业大学机械工程与应用电子技术学院 北京 100124;
2. 中国石油管道公司管道科学研究中心 廊坊 065000;
3. 北京市市政管理学校 北京 102627
AC Stray Current Corrosion Law of Buried Steel Pipeline
WANG Xinhua1, YANG Guoyong1, HUANG Hai1, CHEN Zhenhua2, WANG Limei3
1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China;
2. Petrochina Pipeline R&D Center, Langfang 065000, China;
3. Beijing Municipal Administration School, Beijing 102627, China
全文: PDF(732 KB)  
摘要: 通过室内模拟实验建立了交流电流密度与破损面积、土壤电阻率、交流干扰电压以及防腐层电阻率之间的数学模型,从而间接获取交流电流密度,并研究了交流电流密度对腐蚀速率的影响。通过CDEGS软件模拟仿真,得到了并行长度、电流等级、距离、土壤电阻率等参数对交流干扰沿管道分布的作用。结果表明,破损面积、交流干扰电压、土壤电阻率、防腐层电阻率对交流杂散电流密度具有显著的影响。电流密度小于3 mA/cm2时,交流电流腐蚀危害性很小;在3~10 mA/cm2时,腐蚀危害性较大;大于10 mA/cm2时,交流腐蚀危害性很大。
关键词 交流杂散电流埋地钢质管道腐蚀规律CDEGS软件危害性评价    
Abstract:A lab experimental platform was built to investigate the effect of the AC stray current on the corrosion of buried pipeline. The mathematical model which involved the AC current density, the damage area, soil resistivity, the interference voltage and the coating resistivity was established. The AC current density which would improve efficiency could be obtained indirectly from the model. By using CDEGS software, the distribution law of the parallel length, current rate, distance, soil resistivity and other aspects of AC interference along the pipeline was studied. The results showed that the damaged area, AC interference voltage, soil resistivity and coating resistivity had a significant impact on the AC stray current density. That is, the AC corrosion was small when the current density was lower than 3 mA/cm2; it showed a stronger effect when the current density was between 3 and 10 mA/cm2, and it corroded very heavily when the current density was higher than 10 mA/cm2.
Key wordsAC stray current    buried steel pipeline    corrosion law    CDEGS software    harmfulness evaluation
    
ZTFLH:  TE988.2  

引用本文:

王新华, 杨国勇, 黄海, 陈振华, 王丽梅. 埋地钢质管道交流杂散电流腐蚀规律研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 293-297.
WANG Xinhua, YANG Guoyong, HUANG Hai, CHEN Zhenhua, WANG Limei. AC Stray Current Corrosion Law of Buried Steel Pipeline. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 293-297.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/293

[1] Wu Y S, Cao B. Cathodic and Anodic Protection-Principle, Technology and Engineering Application [M]. Beijing: Chemistry Industry Press, 2007
(吴荫顺, 曹备. 阴极保护和阳极保护——原理、技术及工程应用 [M]. 北京: 化学工业出版社, 2007)
[2] Committee P N T. AC Corrosion State-of-the-Art Corrosion Rate, Mechanism, and Mitigation Requirements [R]. Houston: NACE International, 2008
[3] Yunovich M, Thompson N G. AC corrosion: mechanism and Proposed model [J]. ASME Conf. Proc., 2004, 1: 183-195
[4] Folke G L V N. AC-DC influenced Corrosion in Pipelines FAU GT Summary Report [R]. Denmark: The Danish Gas Technological Centre, 2006
[5] Ted H. Discusses the investigation and mitigation of AC induced corrosion [R]. World Pipelines, 2007
[6] Hao H N, Li Z L, Yi H L, et al. Review on criterion of AC corrosions induced by high voltage transmission lines for underground pipelines [J]. Corros. Sci. Prot. Technol., 2012, 24(2): 86-90
(郝宏娜, 李自力, 衣华磊等. 高压输电线对埋地管道交流腐蚀相关判别的准则 [J]. 腐蚀科学与防护技术, 2012: 24(2): 86-90)
[7] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2008
(曹楚南. 腐蚀电化学 [M]. 北京:化学工业出版社, 2008 )
[8] Weng Y J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 270-274
(翁永基, 王宁. 碳钢交流电腐蚀机理的探讨 [J]. 中国腐蚀与防护学报, 2011, 31(4): 270-274)
[9] Hayden J L R. Alternating current electrolysis [J]. AIEE Trans., 1907, 26(1): 201-204
[10] Song Y W, Wang X H, He R Y, et al. Status in research on stray-current corrosion of buried steel pipelines [J]. Corros. Prot., 2009, 30(8): 515-518
(宋吟蔚, 王新华, 何仁洋等. 埋地钢质管道杂散电流腐蚀研究现状 [J]. 腐蚀与防护, 2009, 30(8): 515-518)
[11] Yin G Y, Wei Z H. Stray current corrosion and prevention [J]. Melded Pipe Tube, 2008, 31(4): 74-76
(尹国耀, 魏振宏. 杂散电流腐蚀与防护 [J]. 焊管, 2008, 31(4): 74-76)
[12] Gong J B, Xu N X, Zhang C D. The effect of AC interference on electrochemical performance of AZ41 magnesium sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 1998, 18(1): 21-26
(龚金保, 徐乃欣, 张承典.交流电干扰对镁合金AZ41牺牲阳极电化学性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18(1): 21-26)
[13] Christoforidis G C, Labridis D P, Dokopoulos P S. Inductive interference calculation on imperfect coated pipelines due to nearby faulted parallel transmission lines [J]. Electric Power Syst. Res., 2003, 66(2): 139-148
[14] SY/T0420-1997, Technology standard of petroleum asphalt coating for buried steel pipeline [S]
(SY/T0420-1997, 埋地钢质管道石油沥青防腐层技术标准 [S])
[15] GB/T23257-2009, Polyethylene coating for buried steel pipeline[S]
(GB/T23257-2009, 埋地钢质管道聚乙烯防腐层 [S])
[16] GB/T1410-2006, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials [S]
(GB/T1410-2006, 固体绝缘材料体积电阻率和表面电阻率试验方法 [S])
[1] 马桂君 . G105钻具钢在含有溶解氧条件下的腐蚀规律[J]. 中国腐蚀与防护学报, 2008, 28(2): 108-111 .
[2] 朱相荣; 黄桂桥; 林乐耘; 刘大扬 . 金属材料长周期海水腐蚀规律研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 142-148 .