Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 357-363    
  综合评述 本期目录 | 过刊浏览 |
固体氧化物燃料电池金属连接体保护膜层研究进展
张辉,王安祺,武俊伟
哈尔滨工业大学深圳研究生院 材料科学与工程学院 深圳 518055
ADVANCES IN PROTECTIVE COATING FOR SOFC METALLIC INTERCONNECT
ZHANG Hui, WANG Anqi, WU Junwei
School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055
全文: PDF(451 KB)  
摘要: 

随着固体氧化物燃料电池(SOFC)的工作温度从1000℃降低到600~800℃,铁素体不锈钢成为SOFC连接体材料的最佳选择,但在高温氧化气氛下,氧化层快速生长以及Cr的毒化问题使得电池堆性能大大降低。目前,主要的解决方式是在基体材料表面涂镀保护膜层和材料改性。前者由于生产简单、成本低成为当前研究热点。本文主要介绍金属连接体保护膜的分类和研究现状,并探讨各膜层材料的优缺点及发展前景。

关键词 固体氧化物燃料电池金属连接体铁素体不锈钢保护膜层    
Abstract

With the solid oxide fuel cells (SOFC) operation temperature reduced from 1000℃ to 600~800℃,\linebreak Fe-based ferritic stainless steels was the best candidate for SOFC interconnect applications. However, rapid scale growth and the volatility of Cr led to significant SOFC performance degradation. Two solutions were suggested to solve the problem, i.e. applying surface protective coating and bulk material modification, and the former one was considered as potential remedy due to its low cost and easy fabrication. The focus of this paper was to categorize the current coatings for interconnects, as well as the characteristics and prospects of coatings.

Key wordssolid oxide fuel cell    metallic interconnect    ferritic stainless steel    protective coating
收稿日期: 2011-11-01     
ZTFLH:  TG132.11  
基金资助:

国家自然科学基金(51101044)和哈尔滨工业大学科研创新基金资助

通讯作者: 武俊伟     E-mail: Junwei.wu@hitsz.edu.cn
Corresponding author: WU Junwei     E-mail: Junwei.wu@hitsz.edu.cn
作者简介: 张辉,男,1987年生,硕士,研究方向为固体氧化物燃料电池连接板材料

引用本文:

张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
ZHANG Hui, WANG Anqi, WU Junwei. ADVANCES IN PROTECTIVE COATING FOR SOFC METALLIC INTERCONNECT. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 357-363.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/357

[1] Fergus J, Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, A397(1-2): 271-283

[2] Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38(6): 957-972

[3] Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics, 2004, 171(1-2): 1-15

[4] Mori M, Wang Z, Itoh T. A-Site and B-Site non-stoichiometry and sintering characteristics of (Sr1-xLax)1-yTi1-zO3 perovskites [J]. J. Fuel Cell Sci. Technol., 2011, 8(5): 1014-1017

[5] Mori M, Wang Z, Serizawa N. Evaluation of SrTi1-xCoxO3 Perovskites (0≤x≤0.2) as interconnect materials for solid oxide fuel cells [J]. J. Fuel Cell Sci. Technol., 2011, 8(5): 1010-1015

[6] Church B C, Sanders T H, Speyer R F, et al. Thermal expansion matching and oxidation resistance of Fe-Ni-Cr interconnect alloys [J]. Mater. Sci. Eng., 2007, A452: 334-340

[7] Yang Z. Recent advances in metallic interconnects for solid oxide fuel cells [J]. Int. Mater. Rev., 2008, 53(1): 39-54

[8] Ebbinghaus B B. Thermodynamics of gas-phase chromium species-the chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes[J]. Combust. Flame, 1993, 93(1-2): 119-137

[9] Wu J, Liu X. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26(4): 293-305

[10] Shaigan N, Qu W. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects [J]. J. Power Sources, 2010, 195(6): 1529-1542

[11] Li X, Lee J W, Popov B N. Performance studies of solid oxide fuel cell cathodes in the presence of bare and cobalt coated E-brite alloy interconnects [J]. J. Power Sources, 2009, 187(2): 356-362

[12] Chu C L, Lee J, Lee T H. Oxidation behavior of metallic interconnect coated with La-Sr-Mn film by screen painting and plasma sputtering [J]. Int. J. Hydrogen Energy, 2009, 34(1): 422-434

[13] Tu H Y, Stimming U. Advances, aging mechanisms and lifetime in solid-oxide fuel cells [J]. J. Power Sources, 2004, 127(1-2): 284-293

[14] Yang Z G, Xia G G, Wang C H, et al. Investigation of iron-chromium-niobium-ferritic stainless steel for solid oxide fuel cell interconnect application [J]. J. Power Sources, 2008, 183(2): 660-667

[15] Quadakkers W J, Paul I L, Hattendorf H, et al. Crofer 22H-a new high strength ferritic steel for interconnectors in SOFC[J]. Fuel Cell Symposium[C]. San Antonio: 2010

[16] Paldey S, Deevi S C. Properties of single layer and gradient (Ti,Al)N coatings [J]. Mater. Sci. Eng. A-Struct. Mater., 2003, 361(1-2): 1-8

[17] Pederson L, Singh P, Zhou X. Application of vacuum deposition methods to solid oxide fuel cells [J]. Vacuum, 2006, 80(10): 1066-1083

[18] Gannon P E, Tripp C T, Knospe A K, et al. High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr-Al-N multilayer and/or superlattice coatings [J]. Surf. Coat. Technol., 2004, 188-189: 55-61

[19] Kayani A, Smith R, Teintze S, et al. Oxidation studies of CrAlON nanolayered coatings on steel plates [J]. Surf. Coat. Technol., 2006, 201(3-4): 1685-1694

[20] Liu X, Johnson C, Li C, et al. Developing TiAlN coatings for intermediate temperature solid oxide fuel cell interconnect applications [J]. Int. J. Hydrogen Energy, 2008, 33(1): 189-196

[21] Wu J, Li C, Johnson C, et al. Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications [J]. J. Power Sources, 2008, 175(2): 833-840

[22] Qi H B, Lees D G. The effects of surface-applied oxide films containing varying amounts of yttria, chromia, or alumina on the high-temperature oxidation behavior of chromia-forming and alumina-forming alloys [J]. Oxid. Met., 2000, 53(5): 507-527

[23] Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45(1-2): 1-37

[24] Hou P Y, Stringer J. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr [J]. J. Electrochem. Soc., 1987, 134(7): 1836-1849

[25] Hou P Y. Sulfur segregation to growing Al2O3 alloy interfaces [J]. J. Mater. Sci. Lett., 2000, 19(7): 577-578

[26] Hou P Y. Beyond the sulfur effect [J]. Oxid. Met., 1999, 52(3): 337-351

[27] Allam I M, Whittle D P, Stringer J. Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys [J]. Oxid. Met., 1979, 13(4): 381-401

[28] Cueff R, Buscail H, Caudron E, et al. Oxidation behaviour of Kanthal APM and Kanthal AF at 1173 K: effect of yttrium alloying addition [J]. Surf. Eng., 2003, 19(1): 58-64

[29] Riffard F, Buscail H, Caudron E, et al. Yttrium sol-gel coating effects on the cyclic oxidation behaviour of 304 stainless steel [J]. Corros. Sci., 2003, 45(12): 2867-2880

[30] Ul-Hamid A. TEM study of the effect of Y on the scale microstructures of Cr2O3 and Al2O3 forming alloys [J]. Oxid. Met., 2002, 58(1): 23-40

[31] Fontana S, Amendola R, Chevalier S, et al. Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. J. Power Sources, 2007, 171(2): 652-662

[32] Piccardo P, Amendola R, Fontana S, et al. Interconnect materials for next-generation solid oxide fuel cells [J]. J. Appl. Electrochem., 2009, 39(4): 545-551

[33] Fontana S, Chevalier S, Caboche G. Metallic interconnects for solid oxide fuel cell: Effect of water vapour on oxidation resistance of differently coated alloys [J]. J. Power Sources, 2009, 193(1): 136-145

[34] Ramanarayanan T A, Ayer R, Petkovicluton R, et al. The influence of yttrium on oxide scale growth and adherence [J]. Oxid. Met., 1988, 29(5-6): 445-472

[35] Cotell C M, Yurek G J, Hussey R J, et al. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. 2. effects of temperature and dopant concentration [J]. Oxid. Met., 1990, 34(3-4): 201-216

[36] Pieraggi B, Rapp R A. Chromia scale growth in alloy oxidation and the reactive element effect [J]. J. Electrochem. Soc., 1993, 140(10): 2844-2850

[37] Zhu J. LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications [J]. Surf. Coat. Technol., 2004, 177-178: 65-72

[38] Johnson C. Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material [J]. Composites B, 2004, 35(2): 167-172

[39] Johnson C, Orlovskaya N, Coratolo A, et al. The effect of coating crystallization and substrate impurities on magnetron sputtered doped LaCrO3 coatings for metallic solid oxide fuel cell interconnects [J]. Int. J. Hydrogen Energy, 2009, 34(5): 2408-2415

[40] Yang Z, Xia G, Maupin G, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications [J]. Surf. Coat. Technol., 2006, 201(7): 4476-4483

[41] Yang Z, Xia G G, Maupin G D, et al. Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications [J]. J. Electrochem. Soc., 2006, 153(10): A1852-A1858

[42] Lee C, Bae J. Oxidation-resistant thin film coating on ferritic stainless steel by sputtering for solid oxide fuel cells [J]. Thin Solid Films, 2008, 516(18): 6432-6437

[43] Choi J J, Lee J H, Park D S, et al. Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process [J]. J. Am. Ceram. Soc., 2007, 90(6): 1926-1929

[44] Mikkelsen L, Chen M, Hendriksen P, et al. Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application [J]. Surf. Coat. Technol., 2007, 202(4-7): 1262-1266

[45] Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures [J]. J. Am. Ceram. Soc., 2007, 90(5): 1515-1520

[46] Burriel M, Garcia G, Santiso J, et al. Co3O4 protective coatings prepared by pulsed injection metal organic chemical vapour deposition [J]. Thin Solid Films, 2005, 473(1): 98-103

[47] Deng X, Wei P, Bateni M, et al. Cobalt plating of high temperature stainless steel interconnects [J]. J. Power Sources, 2006, 160(2): 1225-1229

[48] Yang Z, Xia G, Simner S P, et al. Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects[J]. J. Electrochem. Soc., 2005, 152(9): A1896-A1901

[49] Yang Z G, Maupin G, Simner S, et al. Advanced Interconnect Development [A]. The 6th SECA Annual Workshop [C]. Pacific Grove: 2005

[50] Yang Z, Xia G, Li X, et al. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications [J]. Int. J. Hydrogen Energy, 2007, 32(16): 3648-3654

[51] Wu J, Johnson C D, Jiang Y, et al. Pulse plating of Mn-Co alloys for SOFC interconnect applications [J]. Electrochim. Acta, 2008, 54(2): 793-800

[52] Wu J, Johnson C D, Gemmen R S, et al. The performance of solid oxide fuel cells with Mn-Co electroplated interconnect as cathode current collector [J]. J. Power Sources, 2009, 189(2): 1106-1113

[53] Wu J, Gemmen R S, Manivannan A, et al. Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests [J]. Int. J. Hydrogen Energy, 2011, 36(7): 4525-4529

[54] Gorokhovsky V I, Gannon P E, Deibert M C, et al. Deposition and evaluation of protective PVD coatings on ferritic stainless steel SOFC interconnects [J]. J. Electrochem. Soc., 2006, 153(10): A1886-A1893

[55] Balland A, Gannon P, Deibert M, et al. Investigation of La2O3 and/or (Co,Mn)3O4 deposits on Crofer22 APU for the SOFC interconnect application [J]. Surf. Coat. Technol., 2009, 203(20-21): 3291-3296

[56] Montero X, Tietz F, Sebold D, et al. MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells [J]. J. Power Sources, 2008, 184(1): 172-179

[57] Huang W H, Gopalan S, Pal U B, et al. Evaluation of electrophoretically deposited CuMn1.8O4 spinel coatings on Crofer22 APU for solid oxide fuel cell interconnects [J]. J. Electrochem. Soc., 2008, 155(11): B1161-B1167

[58] Bateni M, Wei P, Deng X, et al. Spinel coatings for UNS 430 stainless steel interconnects [J]. Surf. Coat. Technol., 2007, 201(8): 4677-4684

[59] Piccardo P, Gannon P, Chevalier S, et al. ASR evaluation of different kinds of coatings on a ferritic stainless steel as SOFC interconnects [J]. Surf. Coat. Technol., 2007, 202(4-7): 1221-1225

[60] Chen H, Lucas J A, Priyantha W, et al. Thermal stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications [J]. Surf. Coat. Technol., 2008, 202(19): 4820-4824

[61] Gannon P, Deibert M, White P, et al. Advanced PVD protective coatings for SOFC interconnects [J]. Int. J. Hydrogen Energy, 2008, 33(14): 3991-4000

 

 
[1] 张勇,覃作祥,许鸿吉,常凯,陆兴,佟维. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[2] 金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.