Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (6): 487-490    
  研究报告 本期目录 | 过刊浏览 |
不同时效态对7150铝合金剥蚀行为的影响
黄昌龙1,2,徐海蓉2
1. 西北工业大学航空学院 西安 710072
2. 广州民航职业技术学院 广州 510403
EFFECTS OF TEMPER ON EXFOLIATION CORROSION OF 7150 ALLOY
HUANG Changlong1,2, XU Hairong2
1. School of Aeronautics, Northwestern Polytechnic University, Xi'an 710072
2. Guangzhou Civil Aviation College, Guangzhou 510403
全文: PDF(1053 KB)  
摘要: 针对老龄飞机7150合金飞机结构普遍存在的剥蚀问题,采用海洋性环境腐蚀试验、透射电子显微镜观测等手段,研究了T6、T73和T77时效态7150合金剥蚀行为。研究结果表明:T77时效态抗剥蚀性能最好,T6时效态抗剥蚀性能最差,T73 时效态介于T77和T6时效态之间。7150-T77合金晶界腐蚀产物的锲力,尚不足以提供其剥蚀扩展所需动力。7150合金时效后的晶界微观组织结构,是抗剥蚀性能的重要决定因素。
关键词 7150铝合金剥蚀时效态晶界析出相无弥散区基体    
Abstract:The effects of temper on EFC of 7150 alloy, which is prevalent on aging airplane structure, had been investigated by means of corrosion test on T6, T73 and T77 temper in oceanic environment and transmission electron microcopy (TEM). The test results shown that T77 temper was the best for EFC resistance, T73 temper was the next and T6 temper was the worst. The test results also shown that the wedging stress produced by the corrosion product at the grain boundary of 7150-T77 alloy can not sustain the EFC development. TEM observation shown that continuous η phase existed at the grain boundary of T6 temper. The grain boundary of T73 and T77 temper had PFZ zone and dispersed η phase. The PFZ of T77 temper was thicker than T73 temper. The particles of η phase at the grain boundary of T77 temper were coarser than T73 temper. We can draw a conclusion that the microstructure in grain boundary zone of 7150 alloy is the key factor to the EFC resistance.
Key words7150 alloy    exfoliation corrosion    temper    grain boundary precipitates    PFZ    matrix
收稿日期: 2010-05-04     
ZTFLH: 

TG146.1

 
基金资助:

海南航空股份有限公司技术攻关项目(2006-2009)和中国民航局科技项目

通讯作者: 黄昌龙      E-mail: richardhcl@vip.sina.com
Corresponding author: HUANG Changlong     E-mail: richardhcl@vip.sina.com
作者简介: 黄昌龙,1969年生,男,副教授,博士,研究方向为飞机结构维修理论与技术

引用本文:

黄昌龙,徐海蓉. 不同时效态对7150铝合金剥蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 487-490.
HUANG Chang-Long, XU Hai-Rong. EFFECTS OF TEMPER ON EXFOLIATION CORROSION OF 7150 ALLOY. J Chin Soc Corr Pro, 2010, 30(6): 487-490.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I6/487

[1] Robinson M J,Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys [J]. Corros.Sci., 1999, 41(5): 1013-1028

[2] Robinson M J. The role of wedging stresses in the exfoliation corrosion of high strength aluminium alloy [J]. Corros. Sci., 1983, 23(8): 887-899

[3] Godard H P, Cooke W E. The analysis and composition of aluminum corrosion products [J].Corrosion, 1960, 16: 117-123

[4] Dai X Y, Xia C Q, Sun Z Q, et al. Microstructure and properties of Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr alloy [J]. Chin. J. Nonferrous Met., 2007, 17(3): 396-402

    (戴晓元, 夏长清, 孙振起等. Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能 [J]. 中国有色金属学报, 2007, 17(3): 396-402)

[5] Zhang X M, Zhang X Y, Liu S D, et al. Effect of pre-precipitation after solution on mechanical properties and corrosion resistance of aluminum alloy 7A55 [J]. J. Cent. South Univ., 2007, 38(5): 789-794

    (张新明,张小艳,刘胜胆等. 固溶后降温预析出对7A55铝合金力学及腐蚀性能的影响 [J]. 中南大学学报, 2007, 38(5): 789-794)

[6] McNaughtan D, Worsfold M, Robinson M J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminum alloys [J]. Corros. Sci., 2003,45(10): 2377-2389

[7] Robinson M J. Mathematical modeling of exfoliation corrosion in high strength aluminum alloys [J]. Corros.Sci., 1982, 22(8): 775-790

[8] Kelly D J, Robinson M J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090 [J]. Corrosion, 1993, 49(10): 787-795

[9] Davies J R. Corrosion of Aluminum and Aluminum Alloys [M]. Ohio: ASM International, 1999: 28-29
[1] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[2] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响I:界面结合性能分析[J]. 中国腐蚀与防护学报, 2018, 38(2): 124-132.
[3] 孙擎擎,周文辉,谢跃煌,董朋轩,陈康华,陈启元. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 121-129.
[4] 赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
[5] 黄昌龙,万小朋,赵美英,徐海蓉. 正应力对7150铝合金剥蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 135-138.
[6] 孙霜青 郑弃非 李德富 陈杰 温军国. LY12铝合金的长期大气腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(6): 442-446.
[7] 梁文杰 潘清林 李运春 何运斌 李文斌 周迎春 路聪阁. 新型Al-Cu-Li-(Sc+Zr)合金的剥蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(1): 30-34.
[8] 苏景新; 张昭; 曹发和; 张鉴清; 曹楚南 . 铝合金的晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187-192 .
[9] 李劲风; 郑子樵; 张昭; 张鉴清 . 铝合金剥蚀过程的电化学阻抗谱分析[J]. 中国腐蚀与防护学报, 2005, 25(1): 48-52 .
[10] 李劲风 . T6态峰时效AA2090及AA8090铝-理合金晶间腐蚀与剥蚀性能[J]. 中国腐蚀与防护学报, 2004, 24(3): 135-142 .
[11] 李劲风; 曹发和; 张昭; 程英亮; 张鉴清; 曹楚南 . 铝合金剥蚀敏感性及其定量研究方法[J]. 中国腐蚀与防护学报, 2004, 24(1): 55-64 .
[12] 李劲风; 张昭; 张鉴清 . 铝-锂合金腐蚀性能研究综述[J]. 中国腐蚀与防护学报, 2003, 23(5): 316-320 .
[13] 李获;左尚志;郭宝兰. LY12铝合金剥蚀行为的研究[J]. 中国腐蚀与防护学报, 1995, 15(3): 203-209.