Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (6): 449-452    
  研究报告 本期目录 | 过刊浏览 |
表面活性剂辅助制备钛阳极的电化学性能
郭海艳,朱君秋,邵艳群,唐电
福州大学材料研究所 福州 350108
ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED
GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian
Institute for Materials Research, Fuzhou University, Fuzhou 350108
全文: PDF(424 KB)  
摘要: 用阳离子表面活性剂(CTAB)作为阳极氧化物涂层生长模板剂,用热分解法制备出30% RuO2-70% TiO2/Ti涂层电极。用计时电位、循环伏安方法分析CTAB用量对涂层电催化性能的影响。结果表明:CTAB 在降低析氯电位,提高电极电催化活性上具有显著的效果。表面活性剂CTAB所起的作用主要可以归结为两个方面,一方面用表面活性剂为模板剂使制备的阳极涂层具有高比表面积和多孔性结构,增大涂层的真实表面积;另一方面,CTAB辅助所制备的电极涂层具有高密度的缺陷结构,使涂层的催化活性位密度增大。
关键词 钛阳极表面活性剂粗糙度表面活性点电化学性能    
Abstract:30%Ru-70%Ti/Ti anode coatings on titanium TA2 substrates were prepared by thermal decomposition method. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was introduced into this process as a templating agent. The effect of the templating agent CTAB on the surface area and the electrocatalytic activity of the anodes were studied by chlorine evolution potential (ECl), cyclic voltammetry (CV), voltammetric charge capacity (q*), active sites (Na) and roughness (Rf) tests. The results show that the using of templating agent CTAB had significant effects on reducing chlorine potential and enhancing electrocatalytic activity. The improvements of the electrocatalytic activity the RuO2-TiO2/Ti anodes can be attributed to two reasons: on the one hand, the high-surface areas and the porous oxide structures were obtained via CTAB, on the other hand, the porous oxide coatings had high-density structural defects, the surface active sites density was increased.
Key wordstitanium anode, surfactant    roughness, surface-active site    electrochemical properties
收稿日期: 2009-07-27     
ZTFLH: 

TG166

 
基金资助:

国家高技术发展计划项目(2007AA03Z325)、福建省重点国际合作项目(20021011)和福州大学科技启动基金项目(2006-XQ-02)资助

通讯作者: 邵艳群      E-mail: yqshao1989@163.com
Corresponding author: SHAO Yanqun     E-mail: yqshao1989@163.com
作者简介: 郭海艳,女,1984年生,研究生,研究方向为纳米材料和电化学

引用本文:

郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
GUO Hai-Yan, TANG Dian, ZHU Jun-Qiu, SHAO Yan-Qun. ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED. J Chin Soc Corr Pro, 2010, 30(6): 449-452.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I6/449

[1] Beer H B. The invention and industrial development of metal anodes [J]. J Electrochem. Soc., 1980, 127(8): 303C-307C

[2] Trasatti S. Electrocatalysis: understanding the success of DSA [J]. Electrochim. Acta, 2000, 45(15): 2377-2385

[3] Xu L K, Scantlebury J D. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode [J].Corros. Sci., 2003, 45(12): 2729-2740

[4] Hayfield P C S.Development of the noble metal/oxide coated titanium electrode [J]. Platin Met. Rev., 1998, 42(2): 46-55

[5] Xu L K, Xin Y L, Wang J T.A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54(6): 1820-1825

[6] Comninellis C, Vercesi G P. Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating [J]. J Appl. Electrochem., 1991, 21(4): 335-345

[7] Terezo A J, Pereira E C. Fractional factorial design applied to investigate properties of Ti: IrO2-Nb2O5 electrodes [J]. Electrochim. Acta, 2000, 45(25-26): 4351-4358

[8] Feng S X. Ordered mesoporous materials with improved stability and catalytic activity [J]. Catalysis, 2005, 35(1): 9-24

[9] Ratnamala A, Suresh G, Durga K V, et al. Template synthesized nano-crystalline natrotantite: Preparation and photocatalytic activity for water decomposition [J]. Mater. Chem. Phys., 2008,110(1): 176-179

[10] Debraj C, Subhash C L, Asim B. Highly porous organic-inorganic hybrid silica and its titanium silicate analogs as efficient liquid-phase oxidation catalysts [J]. Appl. Catalysis A:General, 2008, 342(1-2): 29-34

[11] Xie Y, Zhao X J,  Li Y Z, et al.CTAB-assisted synthesis of mesoporous F-N-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity [J]. J Solid State Chem., 2008, 181(8): 1936-1942

[12] Lee D U, Jang S R, Vittal R, et al. CTAB facilitated spherical rutile TiO2 particles and their advantage in a dye-sensitized solar cell [J].Solar Energy, 2008, 82(11): 1042-1048

[13] Wang Y J , Ma J M,  Luo M F, et al. Preparation of high-surface area nano-CeO2 by template-assisted precipitation method [J]. J. Rare Earths, 2007,25(1): 58-62

[14] Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors [J]. Electrochim Acta, 2008, 53(8): 3296-3304

[15] Zhu J Q, Shao Y Q, Wang X, et al. CTAB-assisted preparation of RuO2-TiO2 coated anodes [J]. J. Fuzhou Univ. (Nat. Sci. Ed.), 2009,37(2): 228-231

     (朱君秋,邵艳群,王欣等. CTAB辅助制备RuO2-TiO2涂层钛阳极 [J]. 福州大学学报(自然科学版),2009,37(2): 228-231)

[16] Farla L A D, Booata J F C. Trasatti S. Physico-chemical and electrochemical characterization of Ru-based ternary oxides containing Ti and Ce [J]. Electrochem. Acta, 1992, 37(13): 2511-2518

[17] Silava L A D, Alves V A, Trasatti S, et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)PtxO2 oxygen evolution from anodic solution [J]. J Electroanal. Chem., 1997, 427(1-2): 97-104

[18] Zhang J Z, Wang Z L, Liu J, et al. Self-Assembled Nanostructures [M]. New York: Kluwer Academic/Plenum Publishers, 2003

[19] Trasatti S. Advances in Electrochemistry and Electrochemical Engineering [M]. New York:Wiley, 1981

[20] Luca N, Stefano P, Alvise B, et al. Morphology, microstructure and electrocatalytic properties of RuO2-SnO2  thin films [J]. J Electrochem. Soc., 1999, 146(1): 220-225\par
 
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[4] 张方铭,曾志翔,王刚,陈军君,徐勇,王立平. Q235钢超疏水表面制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[5] 王青, 马雪梅, 石海燕, 原珊, 郭建峰, 梁栋, 胡志勇. 苯并咪唑衍生物在1 mol/L HCl溶液中对45#碳钢缓蚀行为的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.
[6] 曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
[7] 赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[8] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[9] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[10] 徐以兵 何德良 周舟 钟建芳 许 超 崔正丹 曾丽萍. 低阴极沉积电位对铝合金表面硅烷膜层的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 220-224.
[11] 范力茹 刘玉文 王宽 李媛 孙奇娜. 试样状态对Cu-Cr合金脱铬腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(1): 15-18.
[12] 侯军才; 关绍康; 任晨星; 徐河; 房中学; 赵彦学 . 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .
[13] 钟庆东 . 冷轧低碳钢板表面形貌与其耐大气腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2004, 24(3): 151-154 .
[14] 王海涛; 左禹; 熊金平 . 表面粗糙度对316L不锈钢亚稳态孔蚀行为的影响[J]. 中国腐蚀与防护学报, 2002, 22(3): 158-161 .
[15] 曾凌三;梁本熹;张跃龙;唐辉尧. N-烷基月桂酰胺对硫酸溶液中碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 1997, 17(1): 68-72.