Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (6): 427-432    
  研究报告 本期目录 | 过刊浏览 |
690TT合金在高温含铅碱液中的腐蚀行为
胡轶嵩,王俭秋,柯伟,韩恩厚
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
CORROSION BEHAVIOR OF ALLOY 690TT IN HIGH TEMPERATURE LEAD-CONTAINING CAUSTIC SOLUTION
HU Yisong, WANG Jianqiu, KE Wei, HAN En-hou
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(2767 KB)  
摘要: 室温条件下690TT合金的极化曲线表明,加入氧化铅能导致合金表面钝化膜不稳定。静态高压釜高温含铅碱液中的浸泡实验表明,在330℃的10% NaOH+10 g/L PbO含铅碱液中,690TT合金发生晶间腐蚀,试样失重,且试样表面越粗糙,腐蚀越严重。其中线切割样品由于残余应力和腐蚀产物楔入应力的综合作用,晶间腐蚀发展成为沿晶应力腐蚀开裂。在330℃的10% NaOH碱液中,690TT合金没有发生晶间腐蚀。
关键词 690TT合金晶间腐蚀沿晶应力腐蚀开裂氧化膜    
Abstract:A small amount of PbO could induce the passive film of alloy 690TT unstable in the caustic solutions at room temperature. The immersion tests were carried out in high temperature lead-containing caustic solutions in a static autoclave. The results showed that alloy 690TT immersed in 10% NaOH+10 g/L PbO solution suffered from intergranular attack (IGA) at 330℃, and the specimens lost weight. The coarser the original surface of the samples, the more serious the samples suffered from corrosion. IGA was observed and developed as intergranular stress corrosion (IGSCC) with respect of residual stress. While no IGA was found for the samples immersed in 10% NaOH solution at 330℃.
Key wordsalloy 690TT    intergranular attack (IGA)    intergranular stress corrosion cracking (IGSCC)    oxide film
收稿日期: 2009-09-29     
ZTFLH: 

TG172.9

 
基金资助:

国家重点基础研究发展规划项目(G2006CB605002)资助

通讯作者: 王俭秋     E-mail: jiqwang@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: jiqwang@imr.ac.cn
作者简介: 胡轶嵩,男,1977年生,博士生,研究方向为核电关键材料的耐蚀性能

引用本文:

胡轶嵩,王俭秋,柯伟,韩恩厚. 690TT合金在高温含铅碱液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
HU Yi-Song. CORROSION BEHAVIOR OF ALLOY 690TT IN HIGH TEMPERATURE LEAD-CONTAINING CAUSTIC SOLUTION. J Chin Soc Corr Pro, 2010, 30(6): 427-432.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I6/427

[1] Was G S. Grain-boundary chemistry and intergranular fracture in austenitic nickel-base alloys-a review [J]. Corrosion, 1990, 46(4):319-330

[2] Ding X S. Corrosion and protection of nuclear power plants steam generator tubes [J].Corros. Prot., 2000, 21(1): 15-18

    (丁训慎. 核电站蒸汽发生器传热管的腐蚀与防护 [J]. 腐蚀与防护, 2000, 21(1): 15-18)

[3] Ding X S. Cleaning technique for steam generators in nuclear power station [J]. Cleaning World, 2004, 20(4): 32-36

    (丁训慎. 核电站蒸汽发生器传热管的清洗技术 [J]. 清洗世界, 2004,20(4): 32-36)

[4] Ding X S. The operation safety of steam generators in NPP [J]. Nucl. Safety, 2004, (4): 29-34

(丁训慎. 核电厂蒸汽发生器运行中的安全问题, 核安全, 2004, (4): 29-34)

[5] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59(11): 931-994

[6] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 2 [J].Corrosion, 2004, 60(1): 5-63

[7] Staehle R W, Gorman J A.Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part3 [J]. Corrosion, 2004, 60(2): 115-180

[8] Miglin B P, Sarver J M. Preliminary studies of lead stress corrosion cracking of alloy 690 [A]. Proceeding of the Fourth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Jekyll Island, GA: 1989: 7-18

[9] Gomez B D, Castno M L, Garcia M S. Stress corrosion cracking susceptibility of steam generator tube materials inAVT(all volatile treatment) chemistry contaminated with lead [J]. Nucl. Eng. Design,1996, 165(1): 161-169

[10] Kim U C, Kim K M, Lee E H. Effects of chemical compounds on the stress corrosion cracking of steam generator tubing materials in a caustic solution [J]. J. Nucl. Mater., 2005, 341: 169-174

[11] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004

(曹楚南. 腐蚀电化学原理 [M]. 北京:化学工业出版社, 2004)

[12] Ahn S J, Rao V S, Kwon H S, et al. Effects of PbO on the repassivation kinetics of alloy 690 [J]. Corros. Sci.,2006, 48(5): 1137-1153

[13] Hwang S S, Kim H P, Lee D H, et al. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead [J]. J. Nucl. Mater.,1999, 275(1): 28-36

[14] Hwang S S, Kim J S. Electrochemical interaction of lead with Alloy 600 and Alloy 690 in high-temperature water [J]. Corrosion, 2002, 58(5): 392-398

[15] Montemor M F, Ferreira M G S, Walls M, et al. Influnence of pH on properties of oxide films formed on type 316L stainless steel, alloy 600, and alloy 690 in high-temperature aqueous environments [J]. Corrosion,2003, 59(1): 11-21

[16] Peng B, Lu B T, Lu Y C, et al. Investigation of passive films on nickel alloy 690 in lead-containing environments [J]. J. Nucl. Mater., 2008, 378(3): 333-340

[17] Ding X S. IGA/IGSCC and protection on secondary side of steam generator tubes in nuclear power plants [J]. Corros. Prot., 2002,23(10): 441-444

     (丁训慎. 核电站蒸汽发生器传热管二次侧晶间腐蚀和晶间应力腐蚀及防护 [J]. 腐蚀与防护, 2002, 23(10): 441-444)

[18] Thomas L E, Bruemmer S M. High-resolution characterization of intergranular attack and stress corrosion cracking of alloy 600 in high-temperature primary water [J]. Corrosion, 2000,56(6): 572-587

[19] Miglin B P, Sarver J M, Psaila-Dombrowksi M J, et al. Lead assisted stress corrosion cracking of nuclear steam generator tubing materials [A]. Proceeding of Improving the Understanding and Control of Corrosion on the Secondary Side of Steam Generator [C]. Airlie, NACE: 1995: 305-320
[1] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[2] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[3] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[4] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[5] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[6] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[7] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[8] 杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[9] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[10] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[11] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[12] 王胜刚, 孙淼, 龙康. 紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用[J]. 中国腐蚀与防护学报, 2016, 36(4): 287-294.
[13] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[14] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[15] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.