Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (2): 81-87    
  研究报告 本期目录 | 过刊浏览 |
轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析
周华茂;王俭秋 ;张波;韩恩厚;臧启山
中国科学院金属研究所  金属腐蚀与防护国家重点实验室 沈阳 110016
ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS
ZHOU Huamao; WANG Jianqiu; ZHANG Bo; HAN Enhou; ZANG Qishan
Key Laboratory for Corrosion and Protection; Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110016
全文: PDF(647 KB)  
摘要: 

利用全数字声发射系统研究了轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号。结果表明,轧制AZ31B镁合金在NaCl溶液中的腐蚀疲劳过程主要存在4种声发射源, 其中与腐蚀相关的两种信号分别对应于阳极溶解和阴极析氢,前者属于板平面内激励源,产生扩展波信号;后者属于板平面外激励源,产生弯曲波。与载荷相关的两种信号分别对应于塑性变形的连续型信号和裂纹扩展阶段高载荷阶段出现的裂纹扩展信号。腐蚀相关的声发射信号存在于整个疲劳过程,而塑性变形信号只发生在疲劳过程中特定的应力阶段。

关键词 AZ31B镁合金腐蚀疲劳声发射频谱分析    
Abstract

Acoustic emission (AE) signals during corrosion fatigue of a rolled AZ31B magnesium alloy were studied. There were mainly four types of signals found in the corrosion fatigue process. Two types of AE signals corresponded respectively to anodic dissolution and cathodic hydrogen evolution appeared in a whole loading cycle. The signals of anodic dissolution belonged to the sources in plate produced extensive waveform, while the signals of cathodic hydrogen evolution belonged to the sources out of plate produced flexural waveform.Another two types of AE signals were corresponded to mechanical signals. One was the signals of plastic deformation which were continuous signal and appeared at the certain stress stage in a loading cycle. At the stage of crack propagation, crack propagation signals appeared at high stress loading part of each cycle.

Key wordsAZ31B magnesium alloy    corrosion fatigue    acoustic emission    spectrum analysis
收稿日期: 2007-07-24     
ZTFLH: 

TG146

 
基金资助:

国家重点基础研究发展规划项目(2007CB613705)

通讯作者: 王俭秋     E-mail: jiqwang@imr.ac.cn
Corresponding author: WANG Jianqiu     E-mail: jiqwang@imr.ac.cn

引用本文:

周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
ZHOU Hua-Mao. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS. J Chin Soc Corr Pro, 2009, 29(2): 81-87.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I2/81

[1] Liu Y, Li Y Y, Zhang W W, et al. Development of the fatigue of magnesium alloys[J]. Mater. Rev., 2005, 19(2): 87-89
    (刘英, 李元元, 张卫文等. 镁合金疲劳的研究进展[J]. 材料导报,2005, 19(2): 87-89)
[2] Hilpert M, Wagner L. Corrosion fatigue behavior of the high strength magnesium alloy AZ80[J]. J. Mater. Eng. Performance., 2000, 9(4): 402-407
[3] Eliezer A, Gutman E M, Abramov E, et al. Corrosion fatigue of die cast and extruded magnesium alloys[J]. J. Light. Met., 2001, 1: 179-186
[4] Unigovski Ya, Eliezer A, Abramov E, et al. Corrosion fatigue of extruded magnesium alloys[J]. Mater. Eng., 2003, A360: 132-139
[5] Yuan Z M, Ma Y K, He Z Y. Acoustic Emission Technology and Its Application[M]. Beijing: China Machine \linebreak Press, 1985
    (袁振明, 马羽宽, 何泽云. 声发射技术及其应用[M]. 北京: 机械工业出版社, 1985)
[6] Zhang B Q. The evaluation of corrosion process of metals by use of acoustic emission[J]. J. Daqing Pet. Inst., 1994, 18(2): 60-68
    (张宝琪. 利用声发射评定金属的腐蚀过程[J]. 大庆石油学院学报,1994, 18(2): 60-68)
[7] Berkovits A, Fang D. Study of fatigue crack characteristics by acoustic emission[J]. Eng. Fract. Mech., 1995, 51(3): 401-416
[8] Lindley T C, Palmer I G, Richards C E. Acoustic emission monitoring of fatigue crack growth[J]. Mater. Sci. Eng., 1978, 32: 1-15
[9] Fang D, Berkovits A. Evaluation of fatigue damage accumulation by acoustic emission[J].Fatigue. Fract. Eng. Mater. Struct., 1994, 17(9): 1057-1067
[10] Shan D, Nayeb-Hashemi H. Fatigue-life prediction of SiC particulate reinforced aluminum alloy 6061 matrix composite using AE stress delay concept[J].J. Mater. Sci., 1999, 34: 3263-3273
[11] Dzenis Y A. Cycle-based analysis of damage and failure in advanced composites under fatigue 1. Experimental observation of damage development within loading cycles[J]. Int. J. Fatigue., 2003, 25: 499-510
[12] Philips A L,Godinez V G, Stafford S W. Amplitude distribution analysis for b-value relationship to the plasticity of 7075-T6 aluminum[J]. Mater. Eval.,1985, 43: 420-425
[13] Geng R S, Shen G T, Liu S F. Modal acoustic emission: a powerful tool for acoustic emission signal processing[J]. Nondestru. Test., 2002, 24(8): 341-345
      (耿荣生, 沈功田, 刘时风. 模态声发射--声发射信号处理的得力工具[J].无损检测, 2002, 24(8): 341-345)
[14]} Kohn D H, Ducheyne P. Sources of acoustic emission during fatigue of Ti-6Al-4V: effect of microstructure[J]. J. Mater. Sci., 1992, 27: 1633-1641
[15]} Zhou H M, Wang J Q, Zang Q S, et al. Chracteristics of acoustic emission during fatigue of as-rolled AZ31B magnesium alloy[J]. Mater. Sci. Forum.,2007, 546-549: 579-584

[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[3] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[4] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[5] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[6] 崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[7] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[8] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[9] 吴超云 . AZ31B镁合金表面硅烷处理研究[J]. 中国腐蚀与防护学报, 2008, 28(3): 146-150 .
[10] 张强 . 304不锈钢微尺度试样的腐蚀疲劳性能[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[11] 张正贵 . 高强度铝合金构件腐蚀疲劳失效分析[J]. 中国腐蚀与防护学报, 2008, 28(1): 48-52 .
[12] 常红; 韩恩厚; 王俭秋; 柯伟 . 飞机蒙皮涂层对LY12CZ铝合金腐蚀疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[13] S.A.Shipilov . 腐蚀疲劳裂纹扩展的机理[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
[14] 靳惠明; 李铁藩; 李美栓 . 钇离子注入改善Co-40Cr合金表面氧化膜粘附性的作用[J]. 中国腐蚀与防护学报, 1999, 19(1): 50-54 .
[15] 王荣;郑修麟. 变幅载荷下铝合金的腐蚀疲劳裂纹起始寿命[J]. 中国腐蚀与防护学报, 1998, 18(3): 178-186.