Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (6期): 331-336    
  研究报告 本期目录 | 过刊浏览 |
纳米掺杂对Al2O3+13%TiO2等离子喷涂涂层耐蚀性能的影响
李春福1;王 戎2;牛艳花1;朱泽华1;李天雷1
1.西南石油大学 油气藏地质与开发国家重点实验室  成都  610500
2.中国石油大学(北京)化学化工学院  北京  102249
INFLUENCE OF DOPED NANOPARTICLES ON THE ANTICORROSION PERFORMANCE OF THE PLASMA SPRAYING Al2O3 + 13 mass% TiO2 COATINGS
LI Chunfu1;WANG Rong2;NIU Yanhua1;ZHU Zehua1;LI Tianlei1
1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University;Chengdu 610500
2.College of Chemistry and Chemical Engineering; Petroleum University of China(Beijing);Beijing 102249
全文: PDF(1421 KB)  
摘要: 

利用大气等离子喷涂技术(APS),在45号钢基体上制备纳米掺杂5%~30%Al2O3+13%TiO2(质量分数)涂层,利用扫描电镜(SEM)、X射线衍射(XRD)等技术手段测定涂层组织结构及密度、孔隙度、通孔率等性能,在80℃、10%H2SO4溶液中对涂层进行浸蚀实验。结果表明,纳米掺杂提高了涂层在酸性介质中的鼓泡时间,而涂层从鼓泡到脱落所需时间与纳米含量无关。这是由于纳米掺杂使涂层密度提高,开孔率、通孔率降低,组织均匀性提高所致。建立了热喷涂涂层毛细管腐蚀模型,解释了纳米掺杂量对涂层失效的影响机理。

关键词 等离子喷涂纳米掺杂Al2O3+13wt%TiO2陶瓷涂层涂层腐蚀失效    
Abstract

The coating samples of Al2O3+13mass% TiO2 doped with 5% to 30% of nanoparticles were prepared on the substrate of steel 45 by air plasma spraying. The composition and structure, density, open hole percentage and pylome number were analyzed by SEM, XRD and other physical analysis methods. The samples were undergone corrosion in the medium of 10% H2SO4 aqueous solution at temperature 800 ℃. The results indicate that the bubbling time of coatings in the corrosive medium was increased with the increase of doped nanoparticles concentration while the time from bubbling to spalling is independent of nanoparticles concentration. The improved performance of anticorrosion was resulted from the increase of coating density, the decrease of open hole percentage and pylome numbers. The capillary corrosion model was established to analyze the influence of the doped nanoparticles on the coating failure.

Key wordsplasma spaying    nanoparticles doping    Al2O3+13wt%TiO2 ceramics coating    coating failure
收稿日期: 2007-03-21     
ZTFLH: 

TB174.442

 
基金资助:

国家自然科学基金资助项目(50372054)

通讯作者: 李春福 lichunfu10@163.com   
Corresponding author: lichunfu   

引用本文:

李春福 王 戎 牛艳花 朱泽华 李天雷. 纳米掺杂对Al2O3+13%TiO2等离子喷涂涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 331-336.
LI Chun-Fu. INFLUENCE OF DOPED NANOPARTICLES ON THE ANTICORROSION PERFORMANCE OF THE PLASMA SPRAYING Al2O3 + 13 mass% TiO2 COATINGS. J Chin Soc Corr Pro, 2008, 28(6期): 331-336.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I6期/331

[1]Ma J.Coatings design and corrosion mechanism of Al2O3ceramic coat-ings[D].Tianjin:Hebei University of Technology,1997(马静.耐蚀Al2O3陶瓷涂层的腐蚀机制及涂层设计[D].天津:河北工业大学,1997)
[2]Xu B S,Zhang W,Liang X B.The application and development of thermal spray materials[J].J.Mater.Eng.,2001,45(12):3-7(徐滨士,张伟,梁秀兵.热喷涂材料的应用与发展[J].材料工程,2001,45(12):3-7)
[3]Qian M G.Handbook of Material Surface Technology and Applica-tion[M].Beijing:China Machine Press,1998,5-7(钱苗根.材料表面技术及应用手册[M].北京:机械工业出版社,1998)
[4]Chen L M,Li Q.The present status and development of plasma spray-ing technology[J].Heat Treat.Technol.Equip.,2006,27(1):1-5(陈丽梅,李强,等离子喷涂技术现状及发展[J].热处理技术与装备,2006,27(1):1-5)
[5]Leon L.Shaw.Thermal residual stresses in plates and coatings com-posed of multi-layered and functionally graded materials[J].Composites,1998,29B:199-210
[6]Erndt C,Lavernia.E J.Thermal spray processing of nanoscale ma-terials I-extended abstracts[J].J.Therm Spray Technol.,2001,7(3):147-181
[7]Zhu Y,Huang M,Huang J,et al.Vacuum-plasma sprayed nanos-tructured titanium oxide films[J].J.Therm Spray Technol.,1999,8(2):219-222
[8]Liu S L,Sun D B,Fan Z S,et al.Current status and progress of thermally sprayed nano structured coatings[J].Mater.Prot.,2006,39(9):40-44(刘胜林,孙冬柏,樊自拴等.热喷涂纳米结构涂层的研究现状[J].材料保护,2006,39(9):40-44)
[9]Tjong S C,Chen H.Nanocrystalline materials coatings[J].Mater.Sci.Eng.,2004,R45(1):1-88
[10]Zhu Y C,Ding C X.Investigation on plasma sprayed TiO2nano-coatings and their ion implantation properties[J].J.Chin.Ceramic Soc.,1999,27(5):520-560(祝延春,丁传贤.等离子喷涂氧化钛纳米涂层及其离子注入特性研究[J],硅酸盐学报,1999,27(5):520-560)
[11]Li C F,Wang R,Liu D H,et al.Effect of doped nano-material on structure and performances of plasma spraying coatings[J].Mater.Prot.,2003,36(5):8-10(李春福,王戎,刘大红等.掺杂纳米材料对等离子喷涂涂层组织性能的影响[J].材料保护,2003,36(5):8-10)
[12]Li C F,Wang R,Wang B,et al.Plasma spraying of doped nano-material application on screw pump[J].Chin.Pet.Mach.,2003,31(special print):89-92(李春福,王戎,王斌等.掺杂纳米陶瓷等离子喷涂在螺杆泵上的应用[J].石油机械,2003,31(特刊):89-92)
[13]Li C F,Dai J L,Wang B,et al.Microstructure and anticorrosion property of AT13coatings made by combination of nanoparticles doping and plasma spraying technique[J].Trans.Mater.Heat Treat.,2004,25(5Ⅱ):964-970
[14]Li C F,Wang B,Zhang Y,et al.Influence of the doped nanophase particle on residual stress of Al2O3+13%TiO2plasma spraying coating[J].Surf.Technol.,2004,33(1):11-14(李春福,王斌,张颖等.纳米掺杂Al2O3基等离子喷涂涂层残余应力分析[J].表面技术,2004,33(1):11-14)
[15]Wang Y Z,Sun Y X,Song Y Q,et al.Wet corrosion behavion of plasma spray Al2O3ceramics coatings on steel1Cr18Ni9Ti[J].Corros.Sci.Prot.Technol.,2002,14(4):227-229(王引真,孙永兴,宋玉强等.等离子喷涂Al2O3涂层腐蚀失效机制[J].腐蚀科学与防护技术,2002,14(4):227-229)
[1] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[2] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[3] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[4] 侯岩枫 许立坤 沈承金 李相波. 封孔处理等离子喷涂Cr2O3涂层耐蚀性的电化学表征[J]. 中国腐蚀与防护学报, 2012, 32(6): 473-477.
[5] 崔玉卉,胡锐,张铁邦,李健,寇宏超,李金山. Fe基非晶/纳米晶涂层的微结构及其在H2O2溶液中的腐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 317-321.
[6] 李守彪, 许立坤,沈承金,李相波. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[7] 王东生 田宗军 陈志勇 沈理达 吴红艳 张平则 刘志东 徐重 黄因慧. TiAl合金表面抗高温氧化涂层研究[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[8] 张玉娟; 孙晓峰; 金涛 . 两种NiCrAlY涂层1050℃恒温抗氧化性能[J]. 中国腐蚀与防护学报, 2002, 22(6): 339-342 .
[9] 储双杰;蒋丹宇;杨峥. 碳/碳复合材料表面等离子喷涂陶瓷涂层的抗氧化性能[J]. 中国腐蚀与防护学报, 1995, 15(2): 145-150.