Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (6期): 321-324    
  研究报告 本期目录 | 过刊浏览 |
用原子力显微镜研究铜合金微生物的腐蚀行为
杜一立1;李进2;葛小鹏2;苑维双2
1. 北京交通大学市政与环境工程系
2. 中国科学院生态环境研究中心
AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS
DU Yili1; LI Jin1; GE Xiaopeng2; YUAN Weishuang1
1. Department of Municipal and Environmental Engineering; Beijing Jiaotong University; Beijing 100044
2. Research Center for Eco-Environmental Science; Chinese Academy of Sciences; Beijing 100085
全文: PDF(1029 KB)  
摘要: 

用原子力显微镜(AFM)研究了HSn70-1A、HSn70-1B和HSn70-1AB等 3种铜合金在硫酸盐还原菌(SRB)菌液中的微生物腐蚀行为。结果表明,3种铜合金表面形成的生物膜形貌各不相同。HSn70-1AB合金表面生物膜的粗糙度大于其余两种合金,表明其生物膜最不均匀。去除生物膜后,3种样品的腐蚀形貌也不相同,粗糙度均有所增加,这是微生物腐蚀作用的结果。研究证实,AFM的定量分析能力是研究材料微生物腐蚀的重要手段。

关键词 原子力显微镜微生物腐蚀生物膜    
Abstract

Atomic force microscopy (AFM) was applied to investigate the microbiologically influenced corrosion of copper alloys immerged in the sulfate reducing bacteria (SRB) inoculated culture medium. Three types of copper alloys were studied, which are HSn70-1A, HSn70-1B and HSn70-1AB. Biofilms formed on the surface of these copper alloys were different. The measurements of surface roughness indicated an asymmetrical structure of the biofilm, and HSn70-1AB has maximal surface roughness. Furthermore, the roughness of HSn70-1A is higher than HSn70-1B. Following the removal of biofilms,increase of roughness indicated the deterioration of copper alloys results from microbiologically influenced corrosion (MIC). The capability of the AFM to produce quantitative information in the study of MIC was confirmed.

Key wordsAEM    microbiologically influenced corrosion    biofilm
收稿日期: 2007-02-12     
ZTFLH: 

TG172.9

 
基金资助:

北京大唐国际电力有限公司资助(TX06-15)

通讯作者: 杜一立 jinli@bjtu.edu.cn   
Corresponding author: DU Yili   

引用本文:

杜一立 李进 葛小鹏 苑维双. 用原子力显微镜研究铜合金微生物的腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(6期): 321-324.
DU Yi-Li, LI Jin, GE Xiao-Peng, YUN Wei-Shuang. AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS. J Chin Soc Corr Pro, 2008, 28(6期): 321-324.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I6期/321

[1]Videla H A.Biological corrosion and biofilm effects on metal biode-terioration[J].Biodeter.Res.1989,2:39-50
[2]Devender K J.Microbial colonization of surface of stainless steel coupons in a deionized water system[J].Water.Res.,1995,29(8):1869-1876
[3]Beer D,Stoodley P,Roe F,et al.Effects of biofilm structures onoxygen distribution and mass transport[J].Biotechnol.Bioeng.,1994,43(11):1131-1138
[4]Lee W C,de Beer D.Oxygen and pH microprofiles above corrosion mild steel covered with a biofilm[J].Biofouling,1995,8(4):273-280
[5]Bremer P J,Geesey G G,Drake B.Atomic force microscopy ex-amination of the topography of a hydrated bacterial biofilm on a copper surface[J].Curr.Microbiol.,1992,24(4):223-230
[6]Beech I B,Cheung C W S,Johnson D B,et al.Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy[J].Biofouling,1996,10(1-3):65-77
[7]Xu L C,Chan K Y,Fang H P.Application of atomic force mi-croscopy in the study of microbiologically influenced corrosion[J].Mater.Charact.,2002,48(2/3):195-203
[8]Li S M,Liu J H,Wu H.Study of microbiologically influenced corrosion of LY12aluminum alloy with atomic force microscopy[J].J.Beijing Univ.Aeronaut.Astronaut.,2003,29(5):419-423(李松梅,刘建华,吴昊.原子力显微镜下LY12铝合金的微生物腐蚀行为[J].北京航空航天大学学报,2003,29(5):419-423)
[9]Fang H P,Xu L C,Zhang T.Study of marine biocorrosion using AFM and Molecular techniques[J].Electrochemistry,2003,9(2):164-169(方汉平,徐立冲,张彤.利用原子力显微镜和分子技术研究海水微生物腐蚀[J].电化学,2003,9(2):164-169)
[10]Liu H F,Wang M F,Xu L M,et al.The role of Ca2+on the mi-crobiologically induced corrosion of carbon steel[J].J.Chin.Soc.Corros.Prot.,2004,24(1):45-47(刘宏芳,汪梅芳,许立铭等.钙离子对碳钢微生物腐蚀的影响[J].中国腐蚀与防护学报,2004,24(1):45-47)
[11]Lin J,Yan Y G,Chen G Z,et al.Application of atomic force microscopy in study of sulfate reducing bacteria to A3steel[J].J.Chin.Soc.Corros.Prot.,2007,27(2):70-73(林晶,阎永贵,陈光章等.应用原子力显微镜研究硫酸盐还原菌对A3钢的腐蚀[J].中国腐蚀与防护学报,2007,27(2):70-73
[12]Postgate J R.The Sulfate-reducing Bacteria(2nd ed.)[M].Cam-bridge:Cambridge University Press,1984,32
[13]GB/T16545-1996,Corrosion of metals and alloys-Removal of cor-rosion products from corrosion test specimens[S].(GB/T16545-1996,金属和合金的腐蚀腐蚀试样上腐蚀产物的清除[S].)
[14]Caldwell D E,Korber D R,Lawrence J R.Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser mi-croscopy[J].J.Microbiol.Methods,1992,15:249-261
[15]Beech I B,Gaylarde C C,Smith J J,et al.Extracellular polysac-charides from Desulfovibrio desulfuricans and Pseudomonas fluo-rescens in the presence of mild and stainless steel[J].Appl.Mi-crobiol.Biottechnol.,1991,25:65-71
[16]Steele A,Goddard D T,Beech I B.Atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms[J].Int.Biodet.Biodegrad.,1994,34(1):35-46
[17]Westra K L,Thomson D J.Effect of tip shape on surface rough-ness measurements from atomic force microscopy images of thin films[J].J.Vac.Sci.Technol.,1995,13:344-349
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[8] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[9] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[10] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[11] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[12] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[13] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[14] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[15] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.