Please wait a minute...
中国腐蚀与防护学报  2002, Vol. 22 Issue (5): 308-310     
  研究报告 本期目录 | 过刊浏览 |
氢对LC4高强铝合金应力腐蚀断裂的影响
刘继华;李荻;张佩芬
北京航空航天大学材料科学与工程系
EFFECT OF HYDROGEN ON STRESS CORROSIONCRACKING OF LC4 ALUMINUM ALLOY
Jihua Liu;Di Li;Peifen Zhang
北京航空航天大学材料科学与工程系
全文: PDF(103 KB)  
摘要: 采用慢应变速率拉伸试验研究了氢在LC4高强铝合金应力腐 蚀断裂过程中的作用。结果表明,LC4合金在干燥空气中不发生应力腐蚀断裂,而在潮湿空 气中发生应力腐蚀断裂.在潮湿空气和阳极极化条件下,铝合金的应力腐蚀断裂机理是以阳 极溶解为主,氢几乎不起作用.在预渗氢或阴极极化条件下,氢脆起主要作用,预渗氢时间 延长可加速LC4合金的应力腐蚀断裂.
关键词 高强铝合金应力腐蚀断裂慢应变速率拉伸    
Abstract:The effect of hydrogen on stress corrosion cracking (SCC) of the high-strength LC4 aluminum alloy in 3.5%NaCl solution has been stu died using slow strain rate tension technique.The experimental results showed th at the alloy is susceptible to SCC in humid air,especially in NaCl solution.SCC may occur in the mechanisms of anodic dissolution and hydrogen embrittlement,but the mechanisms would be varied under various conditions.In humid air,or under t he condition of anodic polarization in 3.5% NaCl solution,the mechanism of SCC i s mainly anodic dissolution.Under the condition of hydrogen pre-permeation or ca thodic polarization,hydrogen embrittlement plays a key role during the SCC proce ss.The results also indicated that the SCC resistance of LC4 alloy decreases wit h increasing the time of hydrogen pre-permeation.
Key wordshigh-strength aluminum alloys    stress corrosion crackin g    slow strain rate tension    hydrogen embrittle
收稿日期: 2000-11-17     
ZTFLH:  TG172.9  
通讯作者: 刘继华     E-mail: jhliu@sues.cn
Corresponding author: Jihua Liu     E-mail: jhliu@sues.cn

引用本文:

刘继华; 李荻; 张佩芬 . 氢对LC4高强铝合金应力腐蚀断裂的影响[J]. 中国腐蚀与防护学报, 2002, 22(5): 308-310 .
Jihua Liu, Di Li, Peifen Zhang. EFFECT OF HYDROGEN ON STRESS CORROSIONCRACKING OF LC4 ALUMINUM ALLOY. J Chin Soc Corr Pro, 2002, 22(5): 308-310 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2002/V22/I5/308

[1]MearsRB ,BrownRH ,DixEH .AGeneralizedTheoryoftheStressCorrosionofAlloys[A].InSymposiumonStressCorrosionCrackingofMetals[C].ASTMandAIME ,1945:323
[2]SprowlsDO ,BrownRH .StressCorrosionMechanismsforAluminumAlloys[A].FundamentalAspectsofStressCorrosionCracking[C].NACE ,1969:466
[3]SpeidelMO .CurrentUnderstandingofStressCorrosionCrackingGrowthinAluminumAlloys[A].TheTheoryofStressCorrosionCrackinginAl loys[C].NATO ,1971:289
[4]GestRJ ,TroianoAR .Stresscorrosionandhydrogenembrittlementinanaluminumalloy[J].Corrosion,1974,30(8):274-279
[5]ScamansGM ,AlaniR ,SwannPR .Pre-exposureembrittlementandstresscorrosionfailureinAl-Zn-Mgalloys[J].Corros.Sci.,1976,16(7):443-459
[6]AlbrechtJ,ThompsonAW ,BernsteinIM .Theroleofmicrostructureinhydrogen-assistedfractureof7075aluminum[J].Metall.Trans.A ,1979,10(11):1759-1766
[7]ScamansGM .Evidenceforcrack-arrestmarkingsonintergranularstresscorrosionfracturesurfacesinAl-Zn-Mgalloys[J].Metall.Trans.A ,1980,11(5):846-850
[8]AlbrechtJ,BernsteinIM ,ThompsonAW .Evidencefordislocationtransportofhydrogeninaluminum[J].Metall.Trans.A ,1982,13(5):811-820
[9]HardwickDA ,ThompsonAW ,BernsteinIM .Theeffectofcoppercon tentandmicrostructureonthehydrogenembrittlementofAl-6Zn-2Mgalloys[J].Metall.Trans.A ,1983,14(12):2517-2526
[10]WeiRP ,PaoPS ,HartRG ,etal.Fracturemechanicsandsurfacechemistrystudiesoffatiguecrackgrowthinanaluminumalloy[J].Met all.Trans.A ,1980,11(1):151-158
[11]XiaoJimei.Hydrogenandmaterials[J].RareMetals,1985,4(2):2-18(肖纪美.氢与金属[J].稀有金属,1985,4(2):2-18)
[12]SpeidelMO .Stresscorrosioncrackingofaluminumalloys[J].Metall.Trans.A ,1975,6(4):631-651
[13]PathaniaRS ,TromansD .Initiationofstresscorrosioncracksinalu minumalloys[J].Metall.Trans.A ,1981,12(4):607-612
[14]GasemZuhairM ,GangloffRichardP .Effectoftemperonenvironmentalfatiguecrackpropagationin7000-seriesaluminumalloys[A].MaterSciForumVols331-337(2000)[C].Switzerland:2000TransTechPublications,2000,1479-1488
[15]TsengMK ,LiuJ ,JinZH .RoleofMgsegregationtograinboundaryinhydrogen-inducedcrackprocessof7050aluminumalloy[A].Alu minumAlloys’90,ICAA2[C].Beijing:InternationalAcademicPublish ers,662-666
[16]SongRG ,ZhangBJ ,ZengMG .Investigationofgrainboundarysegre gationandhydrogen-inducedfracturemechanisminhighstrengthalu minumalloy[J].J .ofAeronauticalMaterials,1997,17(1):31-38(宋仁国,张宝金,曾梅光.高强铝合金晶界偏析与氢致断裂机理的研究[J].航空材料学报,1997,17(1):31-38)
[1] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[2] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[3] 孙霜青,赵予兵,郑弃非,李德富. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202.
[4] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[5] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[6] 杜爱华; 龙晋明; 裴和中 . 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256 .
[7] 张耀丰; 丁毅; 陆晓峰; 顾伯勤 . 304不锈钢在H2S介质条件下的应力腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 101-108 .
[8] 姚红宇;花迎春;宋余九;涂铭旌. 颗粒增强SiC_p/2024铝基复合材料的应力腐蚀断裂行为[J]. 中国腐蚀与防护学报, 1996, 16(3): 206-210.