Please wait a minute...
中国腐蚀与防护学报  1987, Vol. 7 Issue (1): 27-34    
  研究报告 本期目录 | 过刊浏览 |
不锈钢裸表面在氯化物溶液中钝化的动力学规律和机理研究
朱应扬;朱日彰;王旷;张文奇
北京钢铁学院;北京钢铁学院;北京钢铁学院;北京钢铁学院
KINETICS OF PASSIVATION OF STAINLESS STEEL IN CHLORIDE SOLUTION
Zhu Yingyang Zhu Rizhang Wang Kuang Zhang Wenqi (Beijnig University of Iron and Steel Technology)
全文: PDF(921 KB)  
摘要: 本文工作仔细分析了新鲜金属表面的裸露过程,导出了裸表面真实电流衰减规律与试验衰减曲线之间的关系,并获得与去膜方法和试验参数无关的真实电流衰减规律。不锈钢裸表面在氯化镁溶液中钝化时的真实电流衰减规律为:i(t)=C_1exp(-a_1t)+C_2exp(-a_2t)。式中第一项反映一价产物吸附膜生长速度,第二项反映氧化膜生长速度。当电位达到某一临界值(远低于点蚀电位)时,裸表面与介质反应会形成点蚀。不锈钢裸表面在氯化镁介质中膜生长的规律符合高电场离子传导的膜生长机理。
Abstract:A detailed analysis of the course in which bare metal surface is generated is presented. The decay law of true current flowing through fresh metal surface, i(t), is independent of the methods of scratching the oxide film on the metal surface, and of parameters selected in experiment. The true current decay i(t) can be calculated from the measured transient current, Ⅰ(t), by the following relationship.I(t)=integral from t_0 to (t+t_0)(aui(t)dtwhen freshly generated stainless steel surface is passivating in the chloride solution, the true current decay law follows the following equationi(t)=C_1exp (-a_1t)+C_2 exp(-a_2t)The first term in this equation is associated mainly with the growth of MeOH adsorbed film, while the second term is related to the growth of oxide film. At potentials above a critical potential that is well below the pitting potential measured from the surface covered with oxide film, corrosion pit would occur on the freshly generated surface. The film growth on the stainless steel in MgCl_2 solution follows the high field ion conduction mechanism.
收稿日期: 1987-02-25     

引用本文:

朱应扬;朱日彰;王旷;张文奇. 不锈钢裸表面在氯化物溶液中钝化的动力学规律和机理研究[J]. 中国腐蚀与防护学报, 1987, 7(1): 27-34.
. KINETICS OF PASSIVATION OF STAINLESS STEEL IN CHLORIDE SOLUTION. J Chin Soc Corr Pro, 1987, 7(1): 27-34.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1987/V7/I1/27

[1] Burstein. G, T.; Marshall. P. I., Corros. Sci. 23. 125(1983)
[2] Bulman. G. M.; Tseung. A. C. C., Corros. Sci., 12. 415 (1972)
[3] Ford, F. P.; Silverman, M., Corrosion, 36, 558(1980)
[4] Alessandro Frignani; Fabrizio Zucchi; Massimo Zucchini; Giordano Trabanelli, Corros. Sci., 20, 791 (1980)
[5] Engseth, P,; Scully, J. C., Corros. Sci,. 15. 505 (1975)
[6] Schwenk, W,; Rahmel, A., Electrochim. Acta, 5, 180(1961)
[7] Burstein. G. T.; Ashley, G. W., Corrosion. 39, 241(1983)
[8] Burstein, G. T., Newman, R. C., Electrochim. Acta. 25, 10009(1980)
[9] Weissmantel, C.; Schwabe, K.; Hecht, B., Werk. Korros., 12, 353(1961)
[10] Beck. T. R., Electrochim. Acta. 18, 815(1973)
[11] Kruger. J.; Ambrose, J. A., NBSIR73~244 , Report, No. 4, National Bureau of Standards, Washington D. C., July (1973)
[12] Keddam. M.; Oltra, R.; Colson, J. C.; Desestret, A., Corros. Sci., 23, 441 (1983)
[13] Lees, D. J.; Hoar, T. P., Corros. Sci., 29, 761 (1980)
No related articles found!