Please wait a minute...
中国腐蚀与防护学报  1981, Vol. 1 Issue (4): 38-48    
  研究报告 本期目录 | 过刊浏览 |
氢在钢的硫化物应力腐蚀破裂中的作用
闻立昌
中国科学院上海冶金研究所
Role of Hydrogen in Sulfide Stress Cracking of Steels
Wen Lichang (Shanghai Institute of Metallurgy; Chinese Academy of Sciences)
全文: PDF(1696 KB)  
摘要: 本文研究了12MnMoVNbTi低合金钢在饱和H_3S溶液中的极化和应力腐蚀行为,并与电解充氢条件下的应力破裂行为进行了对比。证明钢中Mo、Nb含量的变化与热处理条件的不同对其一般腐蚀行为影响很小,但能显著改变其抗应力腐蚀性能,12MnMoVNbTi钢在H_2S介质中的应力腐蚀破裂行为与它们在充氢条件下的应力破裂行为非常类似,显示其应力腐蚀破裂的实质是氢脆。充氢条件下应力弛豫和恒载荷拉伸试验结果表明,氢有引起钢的软化和硬化的双重作用。由于氢的进入所产生的软化作用使钢在屈服强度以下发生塑性变形,但随后的硬化过程又使变形速度逐步减慢。这种由氢的作用引起的在较低应力下发生的塑性变形过程并不直接导致断裂,但塑性变形行为和氢应力破裂行为之间的关系表明,这种变形过程中的位错运动能够帮助氢的移动和向塑变区及裂纹尖端集中,促进氢脆断裂。
Abstract:The polarization and stress corrosion cracking behavior of 12 MnMoVNbTi steels in H_2S saturated solution was studied and comparison with hydrogen stress cracking behavior was made. The results show that the variation of Mo, Nb contents and difference in microstructure of steels have no important effect on corrosion rate but influence their stress corrosion cracking behavior considerably. The similarity between stress cracking behavior of these steels in H_2S solution and in hydrogen charging condition implies that the nature of sulfide stress cracking of steels is hydrogen embrittlement. The experimental results of stress relaxation and constant load tests in hydrogen charging condition prove that hydrogen has dual action of softening and hardening steel.It is found that the entrance of hydrogen induces plastic deformation of 12MnMoVNbTi steels below their yield stress level. The plastic deformation rate slows down with time and will not lead to fracture. From the relationship between hydrogen stress cracking and plastic deformation behavior, it is suggested that the dislocation movement in this deformation process would help the trasport of hydrogen to plastic zone and crack tip and promote hydrogen embrittlement.
收稿日期: 1981-08-25     

引用本文:

闻立昌. 氢在钢的硫化物应力腐蚀破裂中的作用[J]. 中国腐蚀与防护学报, 1981, 1(4): 38-48.
. Role of Hydrogen in Sulfide Stress Cracking of Steels. J Chin Soc Corr Pro, 1981, 1(4): 38-48.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1981/V1/I4/38

[1] A. E. Schuetz and W. D. Robertson, Corrosion, Vol. 13, 437t (1957)
[2] A. Kawashima, K. Hashimoto, and S. Shimodaira, Corrosion, Vol. 32, 321 (1976)
[3]#12
[4] Chu Wuyang, Li Shiqun,Haiao Chimei and Tien Juhugzuor,Corrosion.Vol,36,475(1980)
[5] 包头钢铁公司钢铁研究所,北京钢铁学院金属物理教研室,稀土元素在抗硫化氢、抗氢钢中的应用(1978)
[6] R. N. Parkins and E. G. Haney, Trans, Met. Soc. AIME, Vol. 242, 1943(1968)
[7] R. N.Parkins, F. Mazza, J. J. Royuela, and J. C. Scully, Brit. Corros. J, Vol. 7, 154(1972)
[8] 上出英彦,坂本博司,管原英夫,防蚀技术,Vol.29,136(1980)
[9] C. D. Beachem, Met. Trans., Vol. 3, 437(1972)
[10] 浅野滋,西野洋一,大塚陸郎,日本金属学会志,Vol.43,241(1979)
[11] 羽木秀树,林安德,大谷南海南,日本金属学会志,Vol.42,124(1978) ;Vol.43,320(1979) :
[12] H. Matsui and H. Kimura, Mat. Sci. Eng., Vol. 40, 207(1979)
[13] R. A. Oriani and P. H. Josephic, Met. Trans., Vol. 11A, 1809(1980)
[14] 羽木秀树,林安德,大谷南海男,日本金属学会志 Vol.44,1440(1980)
[15] M. R. Louthan, Jr., G. R.Caskey, Jr., J.A.Donovan, and D. E. Rawl. Jr., Mat. Sci., Eng., Vol. 10, 357(1972)
[16] Y. Kikuta, T, Araki, and S. Ochial, Hydrogen in Metals, Proc. of the 2nd International Congress, Pergamon Press, 3A_3(1977)
[17] J. K. Jien, N. F. Panayotou, and R. J. Richards, ibid, 2B_(11) (1977)
[18] R. Garber, I. M. Bernstein, and A. W. Thompson, Met. Trans., Vol. 12A, 225 (1981)
[19] 大西忠一,东健司,中谷义三,日本金属学会志,Vol.45,373(1981)
No related articles found!