Please wait a minute...
中国腐蚀与防护学报  1981, Vol. 1 Issue (4): 28-37    
  研究报告 本期目录 | 过刊浏览 |
铝—硅涂层防护性能的研究
杨忠林;莫龙生;蔡玉林;郑运荣
北京航空材料研究所;北京航空材料研究所;北京航空材料研究所;北京航空材料研究所
High Temperature Performance of the Aluminium-silicon Coatings
Yang Zhonglin Mo Longsheng Cat Yulin Zheng Yunrong (Institute of Aeronatical Materials; Beijing; China)
全文: PDF(3577 KB)  
摘要: 采用静态高温氧化、热腐蚀试验以及多种物理分析方法研究了镍基合金上的铝—硅涂层的防护性能。揭示了硅在涂层中的分布形式及其在高温曝置期间的变化情况。指出铝—硅涂层的防护性能明显优于渗铝涂层,而且在本试验范围内随硅含量的增加而提高。这是由于: (a) 铝—硅涂层减轻或防止涂层中“MC碳化物缺口”的出现; (b) 含硅的γ′-相具有优良的抗氧化性能; (c) 1100℃短时间曝置后在Al—Si涂层与基体界面处形成的连续的富硅M_6C“隔层”起扩散屏障的作用。
Abstract:The high temperature performance of the aluminium-silicon coated nickelbase superalloy K3 has been studied by static high-temperature oxidation test, hot-corrosion test and many physical analysis methods. The form of silicon distribution in the coating and its change during high-temperature exposure are revealed. The protective properties of the Al-Si coatings are evidently superior to aluminized coating and increase with silicon content for the following reasons. (a) The occurrence of "MC carbide notch" is diminished or prevented in Al-Si coatings. (b) The silicon-containing γ'-phases have a superior oxidation resistance. (c) A continuous Si-rich M(?)C "partition" formed at the interface between Al-Si coating and substrate after a short-time exposure at 1100℃ acts as a diffusion barrier.
收稿日期: 1981-08-25     

引用本文:

杨忠林;莫龙生;蔡玉林;郑运荣. 铝—硅涂层防护性能的研究[J]. 中国腐蚀与防护学报, 1981, 1(4): 28-37.
. High Temperature Performance of the Aluminium-silicon Coatings. J Chin Soc Corr Pro, 1981, 1(4): 28-37.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1981/V1/I4/28

[1] G. V. Zemskov, etc, Effect of Silicon Additions on the Oxidation Resistance of Aluminized Layers on a Nickel-Chromium Alloy. Protective Coatings on Metals, Vol. 4, (1972)
[2] V. S. Moore, W. D. Brentnall, and A. R. Stetson, Evaluation of Coatings for Cobalt-and Nickel-Base Superalloys. NASA CR-72714. N72-18579, (1970)
[4] B. J. Piearcey, and R. W. Smashey,Trans. AIME,Vol.239, 451 (1967)
[5] G. Preis, und G Lennartz,Arch. Eisenhutenwesen, Vol. 46 S.589 (1975)
[6] G. J. Santoro, etc, Oxidation of Alloys in Nickel-Aluminum System with Third-Element Additions of Chromium, Silicon, and Titanium at 1100℃. NASA TND-6414
[7] M. A. Gedwill, Cyclic Oxidation Resistance of Clad IN-100 at 1040° and 1090℃: Time、Cyclie Frequency, and clad Thickness Effects. NASA TND-6276 (1971)
No related articles found!