Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 544-552     CSTR: 32134.14.1005.4537.2022.244      DOI: 10.11902/1005.4537.2022.244
  研究报告 本期目录 | 过刊浏览 |
L-苹果酸和2,2'-联二吡啶对酒石酸钾钠体系低温化学镀铜的影响
朱皓1, 程熠1, 宋晅1, 赵文霞1(), 李鑫巍1, 刘欣1, 回凯宏1, 陈怀军1, 翟世龙2
1.宁夏师范学院化学化工学院 固原 756000
2.西北工业大学物理科学与技术学院 西安 710129
Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature
ZHU Hao1, CHENG Yi1, SONG Xuan1, ZHAO Wenxia1(), LI Xinwei1, LIU Xin1, HUI Kaihong1, CHEN Huaijun1, ZHAI Shilong2
1.School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
2.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(7449 KB)   HTML
摘要: 

确定了MnO2-H2SO4-H2O三元体系的最佳微蚀条件,选择L-苹果酸和2,2'-联二吡啶作为添加剂,研究了L-苹果酸和2,2'-联二吡啶单独添加和复合添加对以酒石酸钾钠作为单一配位剂镀铜体系的影响,通过镀液稳定性、沉积速率以及镀层形貌的变化确定了一种稳定的低温化学镀铜体系。结果表明:酒石酸钾钠化学镀铜体系中L-苹果酸的加入增大了沉积速率,2,2'-联二吡啶的加入降低了该体系的沉积速率。当酒石酸钾钠体系中复合添加剂L-苹果酸和2,2'-联二吡啶的添加浓度分别为2和1 mg/L时,化学镀铜的沉积速率从3.94 µm/h提升至5.20 µm/h,化学镀铜体系比较稳定,镀层均匀致密并且呈现出光泽度高的淡粉红色,镀层附着力好。

关键词 酒石酸钾钠化学镀铜L-苹果酸2,2'-联二吡啶沉积速率    
Abstract

In general, certain additives were incorporated into potassium sodium tartrae based electrolyte for electroless copper plating, aiming to improve its stability and the electroless copper plating efficiency. Herewith, L-malic acid and 2,2'-bidipyridine were selected as additives. The effect of L-malic acid and 2,2'-bidipyridine individually or in combination as additives on the performance of the sodium potassium tartrate based electrolyte for copper plating on polyacrylonitrile-butadiene-styrene copolymer (ABS) plates was studied, while the ABS has been subjected to light etching pre-treatment in an optimized MnO2-H2SO4-H2O ternary solution. The results showed that the addition of L-malic acid increased the Cu-deposition rate, while the addition of 2,2'-bidipyridine decreased the Cu-deposition rate. When the combination additives of 2 mg/LL-malic acid and 1 mg/L2,2'-bidipyridine were added to the potassium sodium tartrate electroless copper plating system, the deposition rate increased from 3.94 µm/h to 5.20 µm/h, and the copper plating system has higher stability. Accordingly, the acquired Cu-coating was uniform, compact and good adhesive to the substrate, and which presents light pink color with a high gloss as well. Finally, a stable low temperature electroless copper plating system was determined in terms of the bath stability, Cu-deposition rate, and the coating morphology and gloss etc.

Key wordssodium potassium tartrate    electroless copper plating    L-malic acid    2,2'-bidipyridine    deposition rate
收稿日期: 2022-07-28      32134.14.1005.4537.2022.244
ZTFLH:  TQ153.1  
基金资助:国家自然科学基金(21561027);宁夏高等学校一流学科建设(NXYLXK2017B11);宁夏自然科学基金(2020AAC03266);宁夏自然科学基金(2022AAC03298);宁夏科技创新领军人才项目(KJT2016004);宁夏青年拔尖人才(宁人社函)([2017]787);宁夏新型高校智库项目(宁教工委办)([2018]12);固原市科技计划项目(2020-GYKYF003);六盘山资源工程技术研究中心(HGZD22-18);无机化学重点学科(宁师院)([2017]83)
通讯作者: 赵文霞,E-mail:zwxchj2006@163.com,研究方向为工程塑料表面修饰、化学镀与电镀研究
Corresponding author: ZHAO Wenxia, E-mail: zwxchj2006@163.com
作者简介: 朱 皓,男,1986年生,硕士生

引用本文:

朱皓, 程熠, 宋晅, 赵文霞, 李鑫巍, 刘欣, 回凯宏, 陈怀军, 翟世龙. L-苹果酸和2,2'-联二吡啶对酒石酸钾钠体系低温化学镀铜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 544-552.
ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 544-552.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.244      或      https://www.jcscp.org/CN/Y2023/V43/I3/544

图1  不同微蚀时间下ABS基体表面SEM图
图2  接触角随微蚀时间的变化趋势
图3  粘接强度随微蚀时间的变化趋势
图4  化学镀铜沉积速率随L-苹果酸添加浓度的变化趋势
图5  化学镀铜沉积速率随2,2'-联二吡啶添加浓度的变化趋势
Test numberFactor

Deposition rate

µm·h-1

Stability of solution

L-malic acid

mg·L-1

2,2'-bidipyridine

mg·L-1

110.54.9921Instability
211.04.4239Stability
311.54.2146Stability
412.04.2008Stability
520.55.9775Instability
621.05.2020Stability
721.55.0115Stability
822.04.9645Stability
930.55.3425Instability
1031.04.9526Stability
1131.54.7857Stability
1232.04.7024Stability
1340.55.0501Instability
1441.04.4629Stability
1541.54.3564Stability
1642.04.3256Stability
表1  L-苹果酸和2,2'-联二吡啶复合添加对沉积速率影响的正交试验结果
AdditiveK1K2K3K4k1k2k3k4R
L-malic acid17.831421.155519.783218.19504.45795.28884.94584.54870.8309
2,2'-bidipyridine21.362219.041418.368218.19335.34064.76044.59214.54830.7923
表2  L-苹果酸和2,2'-联二吡啶复合添加对沉积速率影响的极差分析
图6  化学镀铜沉积速率随L-苹果酸和2,2'-联二吡啶复合添加浓度的变化趋势
图7  不同添加剂条件下镀铜层表面照片
图8  不同添加剂的化学镀铜膜表面形貌
图9  L-苹果酸和2,2'-联二吡啶复合添加对阴阳极极化曲线的影响
1 Ghosh S. Electroless copper deposition: A critical review [J]. Thin Solid Films, 2019, 669: 641
doi: 10.1016/j.tsf.2018.11.016
2 Tang C H. Modern plating technologies: Part III—Electroless copper plating: industrial applications [J]. Electroplat. Finish., 2021, 40: 212
2 唐春华. 现代镀覆技术第三部分──化学镀铜(续2) [J]. 电镀与涂饰, 2021, 40: 212
3 Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
3 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93
doi: 10.11902/1005.4537.2020.256
4 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
4 刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
5 Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2004, 58: 104
doi: 10.1016/S0167-577X(03)00424-5
6 Luo Y. Study on application of EDTA in copper plating [D]. Xi'an: Shanxi University of Science and Technology, 2014
6 罗 媛. EDTA在镀铜中应用的研究 [D]. 西安: 陕西科技大学, 2014
7 Gao W X, Ye J, Li Q L. Research on electroless copper plating of ABS plastic [J]. Zhejiang Chem. Ind., 2019, 50(3): 36
7 高万旭, 叶 健, 李全良. ABS塑料化学镀铜研究 [J]. 浙江化工, 2019, 50(3): 36
8 Ren B, Du N, Cui Y, et al. Influences of C4O6H4KNa on nucleation of copper in HEDP acid electrolyte [J]. Plat. Finish., 2016, 38(5): 5
8 任 兵, 杜 楠, 崔 宇 等. 酒石酸钾钠对HEDP镀铜形核的影响 [J]. 电镀与精饰, 2016, 38(5): 5
9 Kong D L, Xie J P, Fan X L, et al. Researches on stabilizers in electroless copper plating bath using quadrol and EDTA as complexing agent [J]. Plat. Finish., 2014, 36(3): 5
9 孔德龙, 谢金平, 范小玲 等. 化学镀铜溶液中稳定剂的研究 [J]. 电镀与精饰, 2014, 36(3): 5
10 Qin X, Wang J, Gao L Y, et al. Electrochemical study on electroless copper plating using formaldehyde as reductant [J]. Mater. Prot., 2020, 53(1): 125
10 秦 笑, 王 娟, 林高用 等. 甲醛法化学镀铜的电化学研究 [J]. 材料保护, 2020, 53(1): 125
11 Xiao Y J, Xu Y Z. Study on the additive for electroless copper plating taking the potassium sodium tartrate as the main complexing agent [J]. Surf. Technol., 2012, 41(5): 102
11 肖友军, 许永章. 以酒石酸钾钠为主络合剂的化学镀铜添加剂研究 [J]. 表面技术, 2012, 41(5): 102
12 Dela Pena E M, Roy S. Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives [J]. Surf. Coat. Technol., 2018, 339: 101
doi: 10.1016/j.surfcoat.2018.01.067
13 Chen W S, Luo G Q, Li M J, et al. Effect of 2, 2’-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders prepared using electroless plating [J]. Appl. Surf. Sci., 2014, 301: 85
doi: 10.1016/j.apsusc.2014.01.107
14 Lee H, Tsai S T, Wu P H, et al. Influence of additives on electroplated copper films and their solder joints [J]. Mater. Charact., 2019, 147: 57
doi: 10.1016/j.matchar.2018.10.029
15 Lu S, Ren Z B, Xie J Y, et al. Investigation of corrosion inhitibion behavior of 2-aminobenzothiazole and benzotriazole on copper surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 577
15 卢 爽, 任正博, 谢锦印 等. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 577
16 Liu Y Q, Liu G M, Fan W X, et al. Effect of polyethylene Glycol-600 on Acidic Zn-Ni alloy electroplating and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 235
16 刘永强, 刘光明, 范文学 等. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 235
doi: 10.11902/1005.4537.2021.084
17 Li L S, Li X R, Zhao W X, et al. A study of low temperature and low stress electroless copper plating bath [J]. Int. J. Electrochem. Sci., 2013, 8: 5191
18 Bian J, Wang Z L. Study on microetching of ABS plastic with MnO2-H2SO4-Na5P3O10 system prior to electroless copper plating [J]. Electroplat. Finish., 2014, 33: 474
18 边 佳, 王增林. MnO2-H2SO4-Na5P3O10体系对化学镀铜前ABS塑料表面微蚀的研究 [J]. 电镀与涂饰, 2014, 33: 474
19 Xu J S, Yu R, Liu D, et al. Effect of different pretreatment for ABS resin surface on electroless copperplating [J]. J. Funct. Mater., 2013, 44(S2): 350
19 徐久帅, 于 柔, 刘 丹 等. ABS树脂表面不同前处理工艺对化学镀铜的影响 [J]. 功能材料, 2013, 44(S2): 350
20 Xia S G, Li Z X, Wang Z L. Effects of etching conditions on the surface roughening effect of polycarbonate substrate [J]. Plat. Finish., 2011, 33(8): 1
20 夏曙光, 李志新, 王增林. 粗化条件对聚碳酸酯表面粗化效果的影响 [J]. 电镀与精饰, 2011, 33(8): 1
21 Ding J, Lu X B, Zan L X, et al. Study on chromium-free roughening with manganese dioxide for ABS engineering plastic surface [J]. Electroplat. Finish., 2012, 31(06): 27
21 丁 杰, 路旭斌, 昝灵兴 等. ABS工程塑料表面无铬二氧化锰微蚀粗化的研究 [J]. 电镀与涂饰, 2012, 31(06): 27
22 Huang J H, Shih P S, Renganathan V, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper-glycerin complex solution [J]. Electrochim. Acta, 2022, 425: 140710
doi: 10.1016/j.electacta.2022.140710
[1] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[2] 赵晴, 张传波, 王帅星, 杜楠, 赵琳, 李园园. 1.10-菲啰啉在以HCHO为还原剂的化学镀铜体系中的作用[J]. 中国腐蚀与防护学报, 2013, 33(6): 515-520.