Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 861-866    DOI: 10.11902/1005.4537.2021.274
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
纤维增强复合材料加固锈蚀箍筋混凝土梁的抗剪承载力计算模型分析
唐仕盈1, 刘杰1, 陈浩东1, 张嘉濠1, 李伟文1,2(), 杨旭3
1.深圳大学土木与交通工程学院 深圳 518060
2.广东省滨海土木工程耐久性重点实验室 深圳 518060
3.哈尔滨工业大学 (深圳) 土木与环境工程学院 深圳 518055
Analysis on Calculation Model for Shear Capacity of Rust-Stirrup Reinforced Concrete Beams Strengthened with Fiber Reinforced Polymer
TANG Shiying1, LIU Jie1, CHEN Haodong1, ZHANG Jiahao1, LI Weiwen1,2(), YANG Xu3
1.Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China
2.College of Civil Engineering, Shenzhen University, Shenzhen 518060, China
3.School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
全文: PDF(1678 KB)   HTML
摘要: 

基于简化修正压力场理论 (SMCFT),考虑锈蚀后梁的保护层变化、箍筋的锈蚀率和屈服强度等方面的修正,收集并整理了现有文献中的纤维增强复合材料 (FRP) 加固锈蚀箍筋混凝土梁的58组试验数据以及3个计算模型,结合已有试验结果对比分析,证明本文模型的计算值与试验值比值的平均值和方差最小,体现了该FRP加固锈蚀箍筋混凝土梁计算模型的有效性。

关键词 纤维增强复合材料钢筋锈蚀抗剪性能简化修正压力场理论数据统计    
Abstract

A calculation model of shear capacity for the rust steel-stirrup reinforced concrete beams strengthened with fiber reinforced polymer (FRP) was proposed based on the simplified modified compression field theory (SMCFT), which is considered a few important factors of the existing experiment results, the change of protectiveness of the rust beam, the corrosion rate and yield strength of stirrups etc. Then, 58 groups of test data and three calculation models are collected and analyzed from FRP strengthened rust steel-stirrup reinforced concrete beams are collected and analyzed from of the existing literature. It is proved that the average value and variance of the ratio between the calculated values and the test values of the proposed model in this paper are the smallest, which reflects that the validity of the proposed calculation model for the rust stirrup concrete beam strengthened with FRP.

Key wordsFRP    corroded stirrup    shear capacity    SMCFT    data statistics
收稿日期: 2021-09-29     
ZTFLH:  TU375  
基金资助:国家自然科学基金(51878415);国家自然科学基金(51908373)
通讯作者: 李伟文     E-mail: liweiwen@szu.edu.cn
Corresponding author: LI Weiwen     E-mail: liweiwen@szu.edu.cn
作者简介: 唐仕盈,女,1997年生,博士生

引用本文:

唐仕盈, 刘杰, 陈浩东, 张嘉濠, 李伟文, 杨旭. 纤维增强复合材料加固锈蚀箍筋混凝土梁的抗剪承载力计算模型分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 861-866.
Shiying TANG, Jie LIU, Haodong CHEN, Jiahao ZHANG, Weiwen LI, Xu YANG. Analysis on Calculation Model for Shear Capacity of Rust-Stirrup Reinforced Concrete Beams Strengthened with Fiber Reinforced Polymer. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 861-866.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.274      或      https://www.jcscp.org/CN/Y2022/V42/I5/861

图1  试验梁尺寸及配筋示意图
Beamav / dƞ0 / %ƞ / %StirrupFRP StripeVu / kN
R AreaUR Areawf / mmtf / mmnsf / mm
B1C100A6.5@120B14@80------------311.26
B1C5154.86------------313.56
B1C1511512.86------------281.79
B1U100400.1672120318.43
B1U5155.62400.1672120321.67
B1U1511512.65400.1672120288.43
B2C200------------213.19
B2C5255.56------------212.28
B2C1521512.5------------199.6
B2U200400.1672120273.92
B2U5254.81400.1672120280.63
B2U1521513.28400.1672120237.09
B3C300------------176.77
B3C5354.96------------177.01
B3C1531512.28------------163.85
B3U300400.1672120225.47
B3U5355.08400.1672120230.71
B3U1531512.19400.1672120191.02
表1  试验梁尺寸信息
图2  试验梁剪力-位移曲线
图3  梁的横截面折减示意图
图4  模型计算流程图
ModelVcVsVf
Li et al[14]acvftbh0ϕfyvAvh0/sϕfAfEfεfedfsf
EI-Maaddawy[15]2.2 fcρwda13bwd(1-0.01Cr)fyvAvh0ϕfAfEfεfedfsf
AK. EL-SAYED[12]0.17λfcbw,effh0fyvAw,effh0ϕfAf,effEfεfedfsf
表2  现有文献中的计算模型汇总
图5  不同模型试验值与计算值对比
图6  本文模型计算值与试验值对比
ModelEI- MaaddawyLiAK. EL-SAYEDModel of this paper
Average Value1.332.151.771.04
Standard-Deviation0.210.290.360.15
Coefficient of-Variation0.160.130.200.15
表3  不同模型离散指标对比
1 Zhu Z, Cai J S, Hong J X, et al. Effect of hydration response nanomaterials on corrosion resistance of reinforced concrete [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 732
1 朱哲, 蔡景顺, 洪锦祥 等. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响 [J]. 中国腐蚀与防护学报, 2021, 41: 732
2 El-Sayed A K. Shear capacity assessment of reinforced concrete beams with corroded stirrups [J]. Constr. Build. Mater., 2017, 134: 176
doi: 10.1016/j.conbuildmat.2016.12.118
3 Zhao Y X. State-of-art of corrosion-induced cracking of reinforced concrete structures [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2013, 43: 1122
3 赵羽习. 钢筋锈蚀引起混凝土结构锈裂综述 [J]. 东南大学学报(自然科学版), 2013, 43: 1122
4 Chen X D, Zhang Q, Gu X, et al. Probability analysis on service life prediction of reinforced concrete structures [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 673
4 陈宣东, 章青, 顾鑫 等. 基于概率分析的钢筋混凝土结构服役寿命预测研究 [J]. 中国腐蚀与防护学报, 2021, 41: 673
5 Huang Z F. Coupling effect of shear failure modes and steel corrosion on shear behavior of RC beams shear-strengthened with EB-CFRP [D]. Shenzhen: Shenzhen University, 2017
5 黄泽峰. 不同剪切破坏模式下考虑箍筋锈蚀的CFRP加固梁的抗剪性能研究 [D]. 深圳: 深圳大学, 2017
6 Cairns J, Plizzari G A, Du Y, et al. Mechanical properties of corrosion-damaged reinforcement [J]. ACI Mater. J., 2005, 102: 256
7 Zhang W P, Zhou B B, Gu X L, et al. Probability distribution model for cross-sectional area of corroded reinforcing steel bars [J]. J. Mater. Civ. Eng., 2014, 26: 822
doi: 10.1061/(ASCE)MT.1943-5533.0000888
8 El-Sayed A K, Hussain R R, Shuraim A B. Influence of stirrup corrosion on shear strength of reinforced concrete slender beams [J]. ACI Struct. J., 2016, 113: 1223
9 Higgins C, Farrow W C III, Potisuk T, et al. Shear capacity assessment of corrosion-damaged reinforced concrete beams [R]. Salem, Oregon: Oregon Department of Transportation, 2003
10 Zhao Y X, Jin W L. Analysis on shearing capacity of concrete beams with corroded stirrups [J]. J. Zhejiang Univ. (Eng. Sci.), 2008, 42: 19
10 赵羽习, 金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析 [J]. 浙江大学学报 (工学版), 2008, 42: 19
11 ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [R]. Farmington Hills, MI: American Concrete Institute, 2008
12 Vecchio F J, Collins M P. The modified compression-field theory for reinforced concrete elements subjected to shear [J]. ACI J. Proc., 1986, 83: 219
13 Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements [J]. ACI Stuct. J., 2006, 103: 614
14 Li H M, Wu J, Wang Z. Shear performance of reinforced concrete beams with corroded stirrups strengthened with carbon fiber-reinforced polymer [J]. ACI Struct. J., 2016, 113: 51
15 El-Maaddawy T, Chekfeh Y. Shear strengthening of T-beams with corroded stirrups using composites [J]. ACI Struct. J., 2013, 110: 779
16 Qin S D, Dirar S, Yang J, et al. CFRP shear strengthening of reinforced-concrete T-Beams with corroded shear links [J]. J. Compos. Constr., 2015, 19: 04014081
17 El-Sayed A K. Shear capacity prediction for stirrup-corroded RC beams strengthened with FRP [J]. Eng. Struct. Technol., 2019, 11: 32
18 Ye Z W, Zhang W P, Gu X L. Modeling of shear behavior of reinforced concrete beams with corroded stirrups strengthened with FRP sheets [J]. J. Compos. Constr., 2018, 22: 04018035
[1] 朱哲, 蔡景顺, 洪锦祥, 穆松, 周霄骋, 马麒, 陈翠翠. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[2] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[3] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[4] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[5] 蔡新华,徐世,尹世平,何真. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J]. 中国腐蚀与防护学报, 2012, 32(3): 228-234.
[6] 吕小军; 张琦; 项民; 刁鹏; 栗晓飞; 谢国君 . 环境因素对复合材料力学性能的影响[J]. 中国腐蚀与防护学报, 2007, 27(2): 97-100 .