Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (4): 253-261    
  研究报告 本期目录 | 过刊浏览 |
Complete Maps for the Internal Oxidation of Ideal Ternary Alloys Forming Insoluble Oxides under High Oxidant Pressures
F. GESMUNDO1;2; S. WANG1; Y. NIU1
1. State Key Laboratory for Corrosion and Protection; Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110016
2. DICHEP; Universita di Genova; Fiera del Mare; Pad. D; 16129 Genova; Italy
全文: PDF(1195 KB)  
摘要: 

This paper presents an analysis of the conditions of stability of the different forms of internal oxidation of ideal ternary A-B-C alloys, where A is the most noble and C the most reactive component, forming insoluble oxide and exposed to high pressures of a single oxidant. The treatment, based on an extension to ternary alloys of Wagner’s criterion for the transition from internal to external oxidation in binary alloys, allows to predict the existence of three different forms of internal oxidation. In fact, in addition to the most common kinds of internal attack, involving the coupled internal oxidation of B+C beneath external AO scales and the internal oxidation of C beneath external BO scales, a third mode, involving the internal oxidation of C beneath external scales composed of mixtures of AO+BO, becomes also possible under special conditions. A combination of the boundary conditions for the existence of these different types of internal oxidation allows to predict three different kinds of complete maps for the internal oxidation in these systems, one of which involves only two modes, while the other two involve all the three possible modes of internal oxidation.

关键词 ternary alloyhigh oxidant pressureinternaloxidation map    
收稿日期: 2009-06-10     
通讯作者: F. Gesmundo     E-mail: 18614@unige.it

引用本文:

F. GESMUNDO S. WANG Y. NIU. Complete Maps for the Internal Oxidation of Ideal Ternary Alloys Forming Insoluble Oxides under High Oxidant Pressures[J]. 中国腐蚀与防护学报, 2009, 29(4): 253-261.

链接本文:

https://www.jcscp.org/CN/Y2009/V29/I4/253

[1] Niu Y, Gesmundo F. Oxid. Met., 2004, 62: 341.
[2] Gesmundo F, Niu Y. Oxid. Met., 2004, 62: 357.
[3] Niu Y, Gesmundo F. Oxid. Met., 2004, 65: 329.
[4] Niu Y, Gesmundo F. Oxid. Met., 2004, 62: 391.
[5] Gesmundo F, Niu Y. Oxid. Met., 2004, 66: 69.
[6] Gesmundo F, Niu Y. Oxid. Met., 2003, 60: 347.
[7] Niu Y, Gesmundo F. Oxid. Met., 2003, 60: 371.
[8] Gesmundo F, Niu Y. Oxid. Met., 2004, 62: 375.
[9] Wagner C. Z. Electrochem., 1959, 63: 772.
[10] Rapp R A. Corrosion, 1965, 21: 382.
[11] Gaskell D R. Introduction to Thermodynamics of Materials, Washington: Francis and Taylor, 1995.
[12] Crank J. The Mathematics of Diffusion, New York: Oxford University Press, 1994.
[13] Gesmundo F. Viani F. Oxid. Met., 1986 25: 269.
[14] Kofstad P. High Temperature Corrosion, New York: Elsevier Applied Science, 1988.
[15] Wang S. Gesmundo F, Niu Y. Oxid. Met., Submitted for Publication.
[16] Wagner C. J. Electrochem. Soc., 1952, 99: 369.
[17] Niu Y, Gesmundo F. Oxid. Met., 2001, 56: 517.
[18] Wagner C. J. Electrochem. Soc., 1956, 103: 627.
[19] Gesmundo F. To be Published.
[20] Wagner C. Corros. Sci., 1965,5: 751.
[21] Stott F H, Wood G, C. Stringer J. Oxid.Met., 1995, 44: 113.

No related articles found!