Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 484-494    DOI: 10.11902/1005.4537.2018.164
  研究报告 本期目录 | 过刊浏览 |
磁场对纯Cu微生物腐蚀行为的影响
卫晓阳1,2,杨丽景2,吕战鹏1,郑必长2,宋振纶2()
1. 上海大学 材料科学与工程学院 上海 200072
2. 中国科学院宁波材料技术与工程研究所 浙江省海洋材料与防护技术重点实验室;中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Influence of Magnetic Field on Corrosion of Pure Cu in Artificial Seawater with Multispecies Aerobic Bacteria
WEI Xiaoyang1,2,MORADI Masoumeh2,YANG Lijing2,LV Zhanpeng1,ZHENG Bizhang2,SONG Zhenlun2()
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(9719 KB)   HTML
摘要: 

从位于中国东海的舟山海域海底沉积物中分离提取得到4种细菌,分别为弧菌、威尼斯不动杆菌、河流弧菌及咸海鲜芽孢杆菌。采用电化学测量和表面分析技术研究了外加磁场下纯Cu在4种混合细菌溶液中的腐蚀行为。结果表明,磁场对细菌生长无明显影响,但影响Cu表面生物膜的结构与成分,加快生物膜形成与剥落的速率,且磁场越大,附着速度越快。随着磁场增大,生物膜中脂质含量减少,生物膜组成由脂质、蛋白质、碳水化合物转变成蛋白质和碳水化合物,且蛋白质含量降低,碳水化合物含量增多。施加磁场,样品在溶液中的Rct值明显提高,腐蚀电流密度减小,同时表面的点蚀程度减弱,表明磁场可以抑制Cu的微生物腐蚀进程,且磁场强度为60 mT时比28 mT时更能明显抑制Cu的腐蚀。

关键词 混合海洋细菌磁场微生物腐蚀    
Abstract

The effect of static permanent magnetic fields of 28 and 60 mT on the growth rate of marine aerobic bacteria isolated from the East China Sea is studied. The corrosion behavior of pure Cu was also investigated in the artificial seawater with marine aerobic isolated bacteria in the presence of magnetic field by means of electrochemical measurement techniques and surface analysis methods. The formation of biofilm on Cu surface was observed by confocal laser scanning microscopy (CLSM). CLSM images showed that the formation and falling off of the biofilm were accelerated in the presence of magnetic field,while the effect of 60 mT magnetic field was stronger than that of 28 mT. FTIR analysis confirmed that the biofilm structures were changed when magnetic field was introduced to the system, the composition of biofilm changed from lipids, proteins, and carbohydrates to proteins and carbohydrates, while, the amount of protein decreased, but that of the carbohydrate increased. Besides, with the increase of magnetic field intensity, the lipid content decreased. The results of XPS analysis further confirmed that magnetic field affected the nature of corrosion products. The pitting was observed on the Cu surface after removing the formed biofilm using FE-SEM, nevertheless the number and size of pits on the Cu were markedly decreased in the presence of magnetic field. EIS results showed the impedance of pure Cu was significantly increased in the presence of magnetic field. It is concluded that magnetic field could accelerated the formation and falling off of the biofilm by affecting its composition and structure, therewith, inhibit the microbial corrosion process of pure Cu.

Key wordsmultispecies marine bacteria    magnetic field    microbiologically-influenced corrosion
收稿日期: 2018-11-07     
ZTFLH:  TG172.9  
基金资助:宁波市自然科学基金(2018A610211);宁波市十三五海洋经济创新发展示范项目(NBHY-2017-Z2)
通讯作者: 宋振纶     E-mail: songzhenlun@nimte.ac.cn
Corresponding author: Zhenlun SONG     E-mail: songzhenlun@nimte.ac.cn
作者简介: 卫晓阳,女,1994年生,硕士生

引用本文:

卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
Xiaoyang WEI, Masoumeh MORADI, Lijing YANG, Zhanpeng LV, Bizhang ZHENG, Zhenlun SONG. Influence of Magnetic Field on Corrosion of Pure Cu in Artificial Seawater with Multispecies Aerobic Bacteria. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 484-494.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.164      或      https://www.jcscp.org/CN/Y2019/V39/I6/484

图1  有/无磁场条件下细菌的生长曲线
图2  纯Cu在不同磁场强度的含菌溶液中分别浸泡不同时间后的SEM 像
图3  纯Cu在不同磁场强度的含菌溶液中浸泡10 d后去除表面腐蚀产物后的SEM像
图4  纯Cu在不同磁场强度的含菌溶液中浸泡不同时间后的CLSM图
图5  Cu在未施加磁场与施加磁场的溶液中浸泡10 d后表面生物膜的FTIR谱
图6  有/无磁场条件下含菌溶液中浸泡10 d 后铜表面腐蚀产物的XPS分析
Valence stateSample surfaceBinding energy / eVProposed componentsAtomicfraction / %
O 1sBacteria531.3Cu2O17.86
530.2Cu2O
Bacteria+28 mT529.1CuO19.73
530.5Cu2O
Bacteria+60 mT532.0C=O25.79
533.2C-O
C 1sBacteria283.9C=C73.88
285.4C=N
287.7C=O/CO2
Bacteria+28 mT282.2C-O66.05
283.7C=C
285.6C-N
Bacteria+60 mT285.0C-C60.04
285.8C=N
N 1sBacteria399.1=N-3.11
400.3C-NH2
Bacteria+28 mT398.0=N-4.95
399.2C-N-C
Bacteria+60 mT400.1C-NH25.18
401.3N=Cu
Cu 2pBacteria933.1Cu2O3.01
934.9CuO
942.4CuO
953.7Cu2O
962.1Cu2+
Bacteria+28 mT931.9Cu/Cu2O5.02
933.8CuO
941.8CuO
953.2Cu2O
961.6Cu2O
Bacteria+60 mT935.1CuO5.47
942.2CuO
944.3CuO
955.5Cu2+
963.2Cu2O
表1  纯Cu在有/无磁场条件下的溶液中浸泡10 d后表面腐蚀产物的C、O、N和Cu的XPS光谱的拟合参数
图7  不同磁场条件下Cu在含菌溶液中浸泡10 d后的极化曲线
SampleEcorr / V (vs SCE)Icorr / μA·cm-2βc / mV·dec-1βa / mV·dec-1Corrosion rate / 10-3 mm·a-1
Without MF-0.2691.740-758525.50
With 28 mT MF-0.3160.637-53589.34
With 60 mT MF-0.3080.559-67538.21
表2  Cu在未施加磁场和施加磁场的溶液中浸泡10 d后的极化参数
图8  Cu浸泡在不同磁场强度的含菌溶液中的Nyquist图和Bode图
图9  Cu在有/无磁场条件下的溶液中浸泡10 d后EIS拟合所用等效电路
Magnitic field / mTTimedRsΩ·cm2Rct±SDΩ·cm2CPEdlμF·cm-2Rp±SDΩ·cm2CPEpμF.cm-2Rf ±SDΩ·cm2CPEfμF·cm-2Rb±SDΩ·cm2CPEbμF·cm-2
004.619819±1.3627.5365.9±0.7237.1------------
15.6219650±5.7054.4501.1±0.4578------------
32.6119720±4.2112.6389.0±0.9154.3------------
53.5617430±4.1863.3462.5±0.958.8------------
73.8511610±2.4520.1206.2±0.8384.4------------
103.257259±1.1122.5216.7±0.7898.6------------
2804.469294±1.3172.5------233.9±1.2737.175.28±0.186.8
16.9434210±1.7865.5------312.5±1.12153.0292.20±0.2129.4
33.1042200±3.5612.0------4314.0±1.87251.0379.30±0.094.7
52.9741250±6.92112.0------2108.0±0.981170.0584.60±0.87210.0
72.6921580±4.0285.7------8864.0±2.35310.08.51±0.0385.7
102.9314170±1.64106.0------7301.0±1.332800.046.30±0.05106.0
6004.459248±1.2775.6------232.8±1.3217.275.28±0.156.8
16.2435240±1.3071.9------1740.0±1.4525.2281.60±0.2143.3
34.7441020±3.8926.1------902.9±1.6626.956.78±0.6522.9
53.2523020±4.89105.0------6972.0±1.02134.048.07±0.0939.9
74.7719220±1.93121.0------5467.0±2.30162.016.00±0.0441.6
101.8716570±1.67136.0------4337.0±1.41332.03.42±0.0152.2
表3  Cu在未施加磁场和施加磁场的溶液中浸泡不同时间后的电化学阻抗谱拟合参数
[1] Drach A, Tsukrov I, DeCew J, et al. Field studies of corrosion behaviour of copper alloys in natural seawater [J]. Corros. Sci., 2013, 76: 453
[2] Chen S Q, Wang P, Zhang D. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria [J]. Corros. Sci., 2014, 87: 407
[3] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
[4] Huttunen-Saarivirta E, Rajala P, Bomberg M, et al. EIS study on aerobic corrosion of copper in ground water: influence of micro-organisms [J]. Electrochim. Acta, 2017, 240: 163
[5] San N O, Naz?r H, D?nmez G. Microbially influenced corrosion and inhibition of nickel-zinc and nickel-copper coatings by Pseudomonas aeruginosa [J]. Corros. Sci., 2014, 79: 177
[6] San N O, Naz?r H, D?nmez G. Microbial corrosion of Ni-Cu alloys by Aeromonas eucrenophila bacterium [J]. Corros. Sci., 2011, 53: 2216
[7] Fijalkowski K, Nawrotek P, Struk M, et al. The effects of rotating magnetic field on growth rate, cell metabolic activity and biofilm formation by staphylococcus aureus and escherichia coli [J]. J. Magn., 2013, 18: 289
[8] Stra?ák L, Vetterl V, ?marda J. Effects of low-frequency magnetic fields on bacteria Escherichia coli [J]. Bioelectrochemistry, 2002, 55: 161
[9] Zhang P, Zhu Q, Su Q, et al. Corrosion behavior of T2 copper in 3.5% sodium chloride solution treated by rotating electromagnetic field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1439
[10] Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
[11] Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
[12] Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions [J]. Corros. Sci., 2011, 53: 3222
[13] Legeai S, Chatelut M, Vittori O, et al. Magnetic field influence on mass transport phenomena [J]. Electrochim. Acta, 2004, 50: 51
[14] Koza J A, Mühlenhoff S, ?abiński P, et al. Hydrogen evolution under the influence of a magnetic field [J]. Electrochim. Acta, 2011, 56: 2665
[15] Li J N, Zhang P, Guo B. Effects of rotating electromagnetic on flow corrosion of copper in seawater [J]. Trans. Nonferrous Met. Soc., 2011, 21(Suppl.2): S489
[16] Xu Y B, Hou M Y, Ruan J J, et al. Effect of magnetic field on surface properties of Bacillus cereus CrA and its Extracellular Polymeric Substances (EPS) [J]. J. Adhes. Sci. Technol., 2014, 28: 2196
[17] Zheng B J, Li K J, Liu H F, et al. Effects of magnetic fields on microbiologically influenced corrosion of 304 stainless steel [J]. Ind. Eng. Chem. Res., 2013, 53: 48
[18] Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
[19] Burmolle M, Ren D W, Bjarnsholt T, et al. Interactions in multispecies biofilms:do they actually matter? [J]. Trends Microbiol., 2014, 22: 84
[20] Zengler K, Palsson B O. A road map for the development of community systems (CoSy) biology [J]. Nat. Rev. Microbiol., 2012, 10: 366
[21] Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
[22] Kester D R, Duedall I W, Connors D N, et al. Preparation of artificial seawater [J]. Limnol. Oceanogr., 1967, 12: 176
[23] Jackson M, Mantsch H H. The use and misuse of FTIR spectroscopy in the determination of protein structure [J]. Crit. Rev. Biochem. Mol. Boil, 1995, 30: 95
[24] Morikawa M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species [J]. J. Biosci. Bioeng., 2006, 101: 1
[25] Peng X B, Li Q, Ou L N, et al. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice [J]. Int. J. Biol. Macromol., 2010, 47: 304
[26] Zhao S S, Cao F S, Zhang H, et al. Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4-33 isolated from radioactive radon hot spring [J]. Appl. Biochem. Biotechnol., 2014, 172: 2732
[27] Schmitt J, Flemming H C. FTIR-spectroscopy in microbial and material analysis [J]. Int. Biodeterior. Biodegrad., 1998, 41: 1
[28] Zhang D Q, Goun Joo H, Lee Y K. Investigation of molybdate-benzotriazole surface treatment against copper tarnishing [J]. Surf. Interface Anal., 2009, 41: 164
[29] Xu Y J, Weinberg G, Liu X, et al. Nanoarchitecturing of activated carbon: Facile strategy for chemical functionalization of the surface of activated carbon [J]. Adv. Funct. Mater., 2008, 18: 3613
[30] Landoulsi J, Genet M J, Fleith S, et al. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination [J]. Appl. Surf. Sci., 2016, 383: 71
[31] Vassallo E, Cremona A, Ghezzi F, et al. Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD [J]. Appl. Surf. Sci., 2006, 252: 7993
[32] Chang F H, Chen T Y, Lee S H, et al. Corrosion inhibition of copper particles on ITO with 1,2,4-triazole-3-carboxylic acid [J]. Surf. Interface Anal., 2018, 10: 162
[33] Akhavan O, Azimirad R, Safa S, et al. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts [J]. J. Mater. Chem., 2011, 21: 9634
[34] Haverkamp R G, Siew D C W, Barton T F. XPS study of the changes during the service life of polyester powder coatings [J]. Surf. Interface Anal., 2002, 33: 330
[35] Chen Z G, Zou J, Liu Q F, et al. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes [J]. ACS Nano, 2008, 2: 1523
[36] Zhang P, Guo B, Jin Y P, et al. Corrosion characteristics of copper in magnetized sea water [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: S189
[37] Javed M A, Stoddart P R, Palombo E A, et al. Inhibition or acceleration: Bacterial test media can determine the course of microbiologically influenced corrosion [J]. Corros. Sci., 2014, 86: 149
[38] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
[39] Flis J, Zakroczymski T. Impedance study of reinforcing steel in simulated pore solution with tannin [J]. J. Electrochem. Soc., 1996, 143: 2458
[40] Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides [J]. Electrochem. Commun., 2005, 7: 305
[41] Guo B, Zhang P, Jin Y P, et al. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper [J]. Rare Met., 2008, 27: 324
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[7] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[8] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[12] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[13] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[14] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[15] 陈碧, 郑碧娟, 张帆, 刘宏芳. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.