Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 652-658    DOI: 10.11902/1005.4537.2016.120
  研究报告 本期目录 | 过刊浏览 |
磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响
吕亚林1,郑碧娟1,刘宏伟1,熊福平1,刘宏芳1,2(),胡裕龙3
1. 华中科技大学化学与化工学院 材料服役与失效湖北省重点实验室 武汉 430074
2. 深圳华中科技大学研究院 深圳 518000
3. 海军工程大学理学院 武汉 430033
Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel
Yalin LV1,Bijuan ZHENG1,Hongwei LIU1,Fuping XIONG1,Hongfang LIU1,2(),Yulong HU3
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
3. College of Science, Naval University of Engineering, Wuhan 430033, China
全文: PDF(828 KB)   HTML
摘要: 

采用表面分析和电化学手段研究了静态磁场对硫酸盐还原菌 (SRB) 在304不锈钢表面吸附性能的影响。结果表明:磁场强度为150 mT对浮游SRB的生长没有明显的影响,但是可以延迟固着SRB的形成;静态磁场可以抑制SRB生物膜在304不锈钢表面的形成和吸附,磁场强度为4 mT时比150 mT时的效果更好。使用X射线光电子能谱 (XPS) 对腐蚀产物进行分析表明,在静态磁场条件下腐蚀产物中有铁氧化物生成。

关键词 静态磁场硫酸盐还原菌生物膜微生物腐蚀    
Abstract

Effect of the presence of static magnetic field on the microorganism induced corrosion of 304 stainless steel (304SS) was studied. Results show that the SMF of 150 mT did not significantly affect the growth curve of planktonic SRB, but it delayed the formation of sessile SRB. The results of electrochemical measurements and surface analysis indicated that the formation of SRB biofilms could be inhibited and the adhesion of SRB biofilms could be declined on the steel due to the presence of SMF, while the effect of the SMF of 4 mT was stronger than that of 150 mT. X-ray photoelectron spectroscopy (XPS) found that the dominated corrosion product was FeS in the absence of SMF, in other words, the presence of SMF promoted the formation of iron oxides. It is concluded that the static magnetic field (SMF) could be a promising method to prevent the adhesion of sulfate reducing bacteria (SRB) biofilms on steel surface, and therefore to inhibit SRB related microbiological influenced corrosion (MIC).

Key wordsstatic magnetic field    sulfate reducing bacteria    biofilm    microbiological corrosion
    
基金资助:国家自然科学基金项目 (51171067),深圳市基础研发基金项目 (JC201005310696A),华中科技大学创新基金项目 (国合专项2015ZZGH010,前沿探索类2015TS150) 和材料化学与服役失效湖北省重点实验室基金项目 (201502) 资助

引用本文:

吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
Yalin LV, Bijuan ZHENG, Hongwei LIU, Fuping XIONG, Hongfang LIU, Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 652-658.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.120      或      https://www.jcscp.org/CN/Y2016/V36/I6/652

图1  浮游SRB和固着SRB的生长曲线
图2  304SS在0, 4和150 mT磁场下的极化曲线
SMF mT ESCE mV lg IAcm-2 bamVdec-1 bc mVdec-1
0 -217 -6.0 4338 2824
4 -223 -6.5 6407 3368
150 -224 -5.8 6883 3269
表1  304SS在0,4和150 mT磁场下极化曲线的拟合数据
图3  在不同静态磁场强度下304SS的EIS
图4  等效电路图
图5  在不同磁场强度条件下,304SS浸泡于SRB菌液1 d后的表面SEM像
图6  不同磁场强度条件下暴露0.5和1.5 h后表面覆盖SRB生物膜的304SS的EIS曲线
Magnetic field / mT Time / h Rf / kΩcm2
0 0.5 51.2
1.5 45.7
4 0.5 8.3
1.5 8.8
150 0.5 30.1
1.5 12.5
表2  不同磁场强度条件下,覆盖SRB生物膜的304SS的EIS拟合数据
图7  吸附成熟生物膜的304SS在不同静态磁场下暴露0.5 h后的表面SEM像
图8  不同磁场强度暴露0.5 h后,304SS腐蚀产物的XPS分析
SMF / mT E (Fe2p3/2) / eV Specie E (S2p) / eV Specie
0 710.38 FeS 168.38 SO42-
707.48 FeS2 160.66 FeS
713.66 Fe2(SO4)3 162.84 FeS2
--- --- 161.66 S2-
4 706.32 FeS2 168.70 SO42-
710.32 FeS 160.10 FeS
708.29 Fe3O4 161.87 S2-
150 710.82 Fe2O3 169.10 Fe2(SO4)3
707.58 FeS2 161.29 S2-
--- --- 162.86 Na2S2O3
--- —— 160.27 FeS
表3  硫铁化合物的种类
[1] Yuan S, Liang B, Zhao Y, et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corros. Sci., 2013, 74: 353
[2] Venzlaff H, Enning D, Srinivasan J, et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corros. Sci., 2013, 66: 88
[3] Beese P, Venzlaff H, Srinivasan J, et al.Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation[J]. Electrochem. Acta, 2013, 105: 239
[4] Wu T, Xu J, Sun C, et al.Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros. Sci., 2014, 88: 291
[5] Zheng B, Zhao Y, Xue W, et al.Microbial influenced corrosion behavior of micro-arc oxidation coating on AA2024[J]. Surf. Coat. Technol., 2013, 216: 100
[6] Liu H, Zheng B, Xu D, et al.Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system[J]. Ind. Eng. Chem. Res., 2014, 53: 7840
[7] Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels[J]. Corros. Sci., 2014, 79: 128
[8] Li K, Whitfield M, Van Vliet K J. Beating the bugs: Roles of microbial biofilms in corrosion[J]. Corros. Rev., 2013, 31: 73
[9] Dong Z H, Liu T, Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27: 487
[10] Stadler R, Fuerbeth W, Harneit K, et al.First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates[J]. Electrochim. Acta, 2008, 54: 91
[11] Fathy M, Badawi A, Mazrouaa A M, et al.Styrene n-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against sulfate reducing bacteria[J]. Mater. Sci. Eng., 2013, C33: 4063
[12] Wen J, Zhao K, Gu T, et al.A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde[J]. Int. Biodeterior. Biodegrad., 2009, 63: 1102
[13] Street C N, Gibbs A.Eradication of the corrosion-causing bacterial strains desulfovibrio vulgaris and desulfovibrio desulfuricans in planktonic and biofilm form using photo disinfection[J]. Corros. Sci., 2010, 52: 1447
[14] Xu D, Li Y, Gu T.A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm[J]. World J. Microb. Biotechnol., 2012, 28:3067
[15] Zheng B, Li K, Liu H, et al.Effects of magnetic fields on microbiologically influenced corrosion of 304 stainless steel[J]. Ind. Eng. Chem. Res., 2013, 53: 48
[16] Lu Z, Yang W.In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions[J]. Corros. Sci., 2008, 50: 510
[17] Hu J, Dong C, Li X, et al.Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution[J]. J. Mater. Sci. Technol., 2010, 26: 355
[18] Ru?inskien A, Bikul?ius G, Gudavi?iūt L, et al.Magnetic field effect on stainless steel corrosion in FeCl3 solution[J]. Electrochem. Commun., 2002, 4: 86
[19] Sueptitz R, Tschulik K, Uhlemann M, et al.Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions[J]. Corros. Sci., 2011, 53: 3222
[20] Sueptitz R, Tschulik K, Uhlemann M, et al.Magnetic field effects on the active dissolution of iron[J]. Electrochim. Acta, 2011, 56:5866
[21] Fojt L, Stra?ák L, Vetterl V R, et al.Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and staphylococcus aureus[J]. Bioelectrochemistry, 2004, 63: 337
[22] Novák J, Stra?ák L, Fojt L, et al.Effects of low-frequency magnetic fields on the viability of yeast saccharomyces cerevisiae[J]. Bioelectrochemistry, 2007, 70: 115
[23] Filipi? J, Kraigher B, Tepu? B, et al.Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria escherichia coli and pseudomonas putida[J]. Bioresour. Technol., 2012, 120: 225
[24] Ji W, Huang H, Deng A, et al.Effects of static magnetic fields on escherichia coli[J]. Micron, 2009, 40: 894
[25] Niu C, Geng J, Ren H, et al.The strengthening effect of a static magnetic field on activated sludge activity at low temperature[J]. Bioresour. Technol., 2013, 150: 156
[26] Jajte J, Grzegorczyk J, Zmy?lony M, et al.Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes[J]. Bioelectrochemistry, 2002, 57: 107
[27] Mohammed R R, Ketabchi M R, McKay G. Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME)[J]. Chem. Eng. J., 2014, 243: 31
[28] K?iklavová L, Truhlá? M, ?kodová P, et al.Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor[J]. Bioresour. Technol., 2014, 167: 510
[29] Di Campli E, Di Bartolomeo S, Grande R, et al.Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm[J]. Curr. Microbiol., 2010, 60: 412
[30] Chua L Y, Yeo S H.Surface bio-magnetism on bacterial cells adhesion and surface proteins secretion[J]. Colloid. Surf. B: Biointerfaces, 2005, 40: 45
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[9] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[11] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[12] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[15] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.