中国腐蚀与防护学报, 2024, 44(4): 874-882 DOI: 10.11902/1005.4537.2023.285

综合评述

环境友好防腐材料-聚苯胺纳米复合材料的制备及其研究进展

李红玲,, 郎五可

新乡学院化学与材料工程学院 新乡 453000

Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites

LI Hongling,, LANG Wuke

School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang 453000, China

通讯作者: 李红玲,E-mail:13937314347@163.com,研究方向为金属材料表面涂层改性

收稿日期: 2023-09-11   修回日期: 2023-10-14  

基金资助: 国家自然科学基金.  51902278

Corresponding authors: LI Hongling, E-mail:13937314347@163.com

Received: 2023-09-11   Revised: 2023-10-14  

Fund supported: National Natural Science Foundation of China.  51902278

作者简介 About authors

李红玲,女,1977年生,硕士,副教授

摘要

简要介绍了聚苯胺的合成方法,如溶液聚合、反相微乳液聚合、模板聚合、电化学聚合和酶催化聚合。针对聚苯胺在防腐涂料应用中存在的问题,主要从有机酸掺杂、取代改性和原位聚合3个方面对聚苯胺纳米复合材料的改性和制备方法进行了探讨。通过改性可以减少聚苯胺分子链之间的相互作用,从而提高其溶解度和抗腐蚀性能。然后,介绍了氧化石墨烯/聚苯胺、碳纳米管/聚苯胺、无机物/聚苯胺、有机物/聚苯胺4种纳米复合材料近年来在金属防腐领域的研究现状。最后指出现阶段聚苯胺纳米复合材料存在制备工艺复杂、受环境因素影响、防腐机理有待进一步完善等问题。开发长期稳定、耐腐蚀性强的“智能”聚苯胺纳米复合材料将是未来的研究方向。

关键词: 聚苯胺纳米复合材料 ; 掺杂改性 ; 氧化石墨烯 ; 碳纳米管

Abstract

With good conductivity, pitting resistance, corrosion stability and low cost, polyaniline can be used as a filler in the field of anti-corrosion coatings for metallic materials. However, as a filler for anti-corrosion coatings, the solubility and dispersibility of polyaniline are poor, and the porous structure of polyaniline has weak adhesion to the metal substrates, resulting in unsatisfactory corrosion resistance of the coating. If it can be modified reasonably and effectively, the above problems can be solved. The synthetic methods of polyaniline, such as solution polymerization, inverse microemulsion polymerization, template polymerization, electrochemical polymerization and enzyme catalyzed polymerization, were briefly introduced in the article. In response to the problems in the application of polyaniline in anti-corrosion coatings, the modification and preparation methods of polyaniline nanocomposites were mainly discussed from three aspects: organic acid doping, substitution modification, and in-situ polymerization etc. The interaction between polyaniline molecular chains can be reduced by modification, thereby its solubility and corrosion resistance can also be improved. Then, the research status of graphene oxide/polyaniline, carbon nanotubes/polyaniline, inorganic/polyaniline, and organic/polyaniline nanocomposites in the field of metal corrosion protection in recent years was introduced. Finally, it is pointed out that the preparation process of polyaniline nanocomposites is complicated, which may be affected by environmental factors, and the anti-corrosion mechanism of polyaniline nanocomposites needs to be further clarified at this stage. While the development of "intelligent" polyaniline nanocomposites with long-term stability and strong corrosion resistance will be the future research direction.

Keywords: polyaniline nanocomposites ; doping modification ; graphene oxide ; carbon nanotubes

PDF (2720KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李红玲, 郎五可. 环境友好防腐材料-聚苯胺纳米复合材料的制备及其研究进展. 中国腐蚀与防护学报[J], 2024, 44(4): 874-882 DOI:10.11902/1005.4537.2023.285

LI Hongling, LANG Wuke. Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(4): 874-882 DOI:10.11902/1005.4537.2023.285

聚苯胺(PANI)作为一种导电聚合物,广泛用于废水处理材料[1~3]、导电材料[4,5]、吸波材料[6]以及光电显示材料[7~9]。自从Viehbeck和Deberry[10]报道了PANI对不锈钢的防腐作用后,PANI在金属防腐领域得到了广泛的应用[11,12]。Jeyaprabha等[13]报道PANI结构中存在许多重复单元结构,这些单元结构在金属表面起缓蚀剂的作用。众多研究表明,PANI能使钢表面形成钝化层,从而提高腐蚀电位,降低腐蚀速率,抑制腐蚀性物质的渗透[14],是钢的有效缓蚀剂[15~17]。通过电化学聚合,苯胺单体可以直接沉积在金属基底上,形成保护层[18,19]。然而,由于电沉积PANI的多孔结构和与金属基体的附着力较弱[20],涂层的耐腐蚀性并不理想。为了提高防腐效果,常将PANI作为添加剂混入高分子树脂中制备复合涂料,可将有机涂料良好的附着力和阻隔性与PANI的电活性结合起来[21]。复合涂层的防护性能与PANI在涂层基体中的溶解度和分散性密切相关[22]。因此,用酸掺杂或不同纳米材料对PANI进行复合改性,可以提高涂层的溶解度和防腐性能,也能有效解决PANI与金属基材之间附着力差的问题,有效提高PANI涂料的防腐性能[23,24]。大量研究结果表明,改性聚苯胺防腐涂料的防腐性能比常规防腐涂料有明显提高[25~27],改性PANI防腐材料的开发是防腐涂料研发领域的热点[28]

1 PANI 的结构

在20世纪初,Willstatter和Green讨论了PANI的分子结构[29]。1984年,Macdiarmid等[30]首次提出PANI相互转化的4种结构形式,同时对前期提出的PANI模型方法进行了改进和修正,给出了被广泛接受和认可的PANI本征态结构式,如图1所示,其中y (0 < y < 1)表示PANI的氧化程度[31]图2是PANI掺杂态结构式[23]

图1

图1   本征态聚苯胺结构式[31]

Fig.1   Structural formula of intrinsic polyaniline[31]


图2

图2   掺杂态聚苯胺结构式[23]

Fig.2   Structural formula of doped polyaniline[23]


2 PANI 的合成

PANI的合成方法主要有化学聚合、电化学聚合和酶促聚合。

2.1 化学聚合法

化学聚合法是指在适当的条件下,选用适当的氧化剂将苯胺进行氧化聚合的方法。包括乳液聚合、反相微乳液聚合、模板聚合等[32,33]。应用最广泛的方法是反相微乳液聚合。

2.1.1 乳液聚合法

PANI由苯胺、表面活性剂、水、质子酸和有机溶剂以一定的比例混合得到,称为乳液聚合。该方法聚合速率高,分子量高,热稳定性好[34]。乳液聚合法通常是以十二烷基苯磺酸(DBSA)为乳化剂,过硫酸铵为引发剂,加入水、二甲苯和苯胺,一定时间后加入丙酮破乳、洗涤、干燥得到PANI产品。高学凯[35]和张育[36]以DBSA为掺杂剂,过硫酸铵为引发剂,采用乳液聚合法制备了形貌规整的PANI纳米纤维。

2.1.2 反相微乳液聚合法

反相微乳液聚合是目前最理想的PANI纳米颗粒合成方法之一,它采用非极性溶剂作为连续相,油溶性乳化剂将苯胺单体水溶液分散成油包水乳液进行聚合[37]。该方法制备的PANI产品具有粒径小、电导率高、溶解度高等优点。Ullah等[38]以十二烷基苯磺酸为乳化剂,过氧化苯甲酰为引发剂,2-丙醇为溶剂,掺杂不同浓度的聚乙烯醇,通过反相微乳液聚合法制备PANI/聚乙烯醇复合材料。合成的复合物溶于常见的N-甲基吡咯烷酮(NMP)、氯仿、2∶1的甲苯与2-丙醇混合物、1∶1的氯仿与甲苯混合物、2∶1的甲苯与甲醇混合物。

2.1.3 模板聚合法

通过在反应体系中加入沸石、多孔膜和多孔氧化铝膜作为模板,使聚合物结构在模板孔中实现有序排列。与反相微乳液聚合相比,模板法制备的PANI的电导率、结晶度、氧化还原和电化学活性、耐腐蚀性和疏/亲水性都能得到更好的控制[39]。谭德新等[40]以苯胺为原料、过硫酸铵为氧化剂,采用模板法制备PANI,当过硫酸铵与苯胺摩尔比为1:1时,合成的PANI颗粒粒径均匀,结晶度好,电导率最佳。

2.2 电化学合成法

该方法是在含有苯胺的电解质溶液中将苯胺氧化聚合在阳极上,生成附着在阳极表面的PANI薄膜[41],包括恒电位法、恒电流法和循环伏安法。许秀婷等[42]利用电化学工作站对制备好的苯胺溶液和纳米TiO2-苯胺溶液进行循环伏安法电化学聚合。由于PANI合成的循环伏安法既能实现电化学掺杂,又能实现电化学聚合,因此科研人员通常选择循环伏安法。

2.3 酶催化聚合法

通常是以辣根过氧化物酶(Horseradish Peroxidase, HRP)为催化剂,在H2O2存在的条件下,反应中得到的R*自由基相互反应生成二聚体,最终通过氧化链生长反应合成PANI[43]。Nabid等[44]在pH为4的水溶液中,以HRP为催化剂,H2O2为氧化剂,在室温下酶催化聚合制备了PANI及PANI-MWCNT复合材料。

3 PANI 纳米复合材料的改性与制备

为了提高PANI的分散性,有必要通过酸掺杂[45]、在侧链上引入官能团[46]、原位聚合等方法改性PANI,从而得到PANI纳米复合材料。

3.1 有机酸掺杂

酸掺杂过程本质上是电荷转移过程,是通过掺杂剂与PANI的氧化还原反应来实现的。在质子化反应中,PANI链醌亚胺结构上的N原子是有效掺杂点,剩余的N原子对提高PANI的电导率没有作用。在传输过程中,分子链上氮原子的化学环境发生一定程度的变化,导致分子链结构发生变化,因此电导率和耐腐蚀性得到提高[47]。酸掺杂分为无机酸掺杂和有机酸掺杂两种,常用的无机酸有盐酸、硫酸、磷酸、氢氟酸等[8]。无机酸掺杂具有分子尺寸小、易于扩散、制备工艺简单等优点。然而无机酸掺杂有两个缺陷,一是引入腐蚀性酸根离子(Cl-、SO42-)加速金属腐蚀;其次,大多数无机酸的络合能力较差,不足以形成稳定的金属掺杂配合物,因此选择有机酸作为掺杂剂更为有利[48]。有机酸掺杂可以大大提高PANI的溶解度和导电性。常见的有机酸有磺基水杨酸、十二烷基苯磺酸、甲苯磺酸、樟脑磺酸、植酸等[49]。Yao等[50]在Q235钢表面制备了2-羟基膦羧酸掺杂PANI复合环氧涂层,研究了PANI-HPA环氧涂层对Q235钢的耐蚀性影响。与纯环氧涂层相比,PANI-HPA含量为0.5%、1.0%和2.0%的涂层的腐蚀电位均发生明显正移,分别为-0.635,-0.534和-0.351 V;腐蚀电流密度得到有效降低,分别为2.33,0.220和0.375 nA·cm-2。HPA-PANI复合涂层的耐蚀性明显优于环氧涂层,HPA-PANI含量为1%的复合环氧涂层防腐性能最好[51]

3.2 取代改性

通过改变PANI的主链或侧链结构可以改变PANI的溶解性,如通过接枝改性在PANI的侧链上引入一些长烷基链。这些烷基链的引入可以降低PANI分子间的相互作用力,提高其在有机溶剂中的溶解性。如果在PANI的苯环或氨基氮原子上引入亲水基团(如烷基磺酸、烷基磷酸、羧基),可以提高PANI在水中的溶解度。Liu等[52]为了解决PANI-SSA掺杂磺基水杨酸导致的屏障缺陷,设计了不同链长的C5H11Br和C12H25Br(以下以C5和C12表示)在不同极性溶剂(IPA和DMF)中参与PANI-SSA的N-烷基化反应。结果表明,未经改性的PANI-SSA结块严重,与溶液配伍性差,在溶液中放置5 d后出现分层现象。相反,在DMF溶液中浸泡12 d后,N-烷基化PANI-SSA的浓度均匀且高度分散,说明改性后的PANI-SSA在环氧树脂/二甲苯溶液中具有更好的相容性,填料组分与成膜物质的均匀结合减少了涂层缺陷,增强了阻隔能力。与C5相比,C12的吸水性和附着力明显提高,这是因为当固化反应发生时,随着碳链长度的增加,环氧树脂与PANI填料的相容性进一步增强,因此C12涂层的耐腐蚀性优于C5涂层。

3.3 原位聚合

原位聚合是合成PANI复合材料最常用的方法之一,可与多种方法相结合[6]。张守一等[53]通过原位聚合得到PANI/铬酸锶复合材料,如图3所示。将该复合材料与环氧树脂共混,涂覆在碳钢表面,测试了其在3.5%NaCl溶液中的耐腐蚀性能。结果表明,当m(SrCrO4):m(PANI)为1.0时,环氧复合涂层的耐蚀性最好。

图3

图3   β-萘磺酸掺杂聚苯胺的合成示意图[53]

Fig.3   Synthesis of l-naphthalene sulfonic acid doped polyaniline[53]


4PANI纳米复合材料在金属防腐领域的研究进展

4.1 氧化石墨烯/PANI复合材料

近年来,许多研究者试图用PANI对氧化石墨烯(GO)进行改性,以提高改性涂层的耐蚀性[54~56]。Hayatgheib等[57]以过硫酸铵为引发剂合成PANI纳米纤维,通过物理和化学工艺沉积在GO表面。在这种情况下,PANI主要以本征态(EB)存在,然后通过湿转移法制备GO/PANI/EP涂层。结果表明:GO/PANI/EP涂层的耐蚀性明显高于GO/EP涂层。PANI纳米纤维的位阻效应和金属基体的钝化作用是涂层耐蚀性能提高的主要原因[58]。居浩[59]制备了一种聚(脲-氨基甲酸酯)-PANI-GO复合材料(PUU-PANI-GO),该材料由甲苯2, 4-二异氰酸酯和己二肼经缩聚反应而成,是一种自愈防腐材料。通过电化学方法对涂层的耐蚀性进行表征,从图4可以看出,添加了GO和PANI-GO复合填料的PUU的阻抗值与单独使用PUU相比有很大的提高。其中,PAGO含量为2%的PUU-PAGO复合材料具有最高的涂层阻抗值和最佳的耐腐蚀性。可以看出,PANI在GO上接枝提高了复合材料的电化学阻抗。PANI-GO复合材料在涂层厚度上的高阻抗和PANI的钝化作用使得复合涂层具有良好的电化学阻抗性能。

图4

图4   不同涂层在3.5%NaCl溶液中的电化学阻抗谱[57]

Fig.4   EIS spectra of the different coatings in 3.5%NaCl solution[57]


4.2 碳纳米管/PANI复合材料

近年来,碳纳米管(CNT)因其重量轻、导电性好、机械强度和韧性优异而备受关注。PANI可以通过π-π堆积作用和氢键作用吸附在CNT表面,形成电荷转移的桥梁。Rui等[60]在酸性水溶液中,通过亚微米碳酸钙和吸附在碳纳米管表面的苯胺的原位聚合制备了PANI/CNT纳米复合材料。由于CNT与PANI之间的界面π-π相互作用,制备的PANI/CNT复合材料在酸性和中性介质中均表现出良好的氧化还原能力[61]。CNT和PANI的结合大大提高了纳米PANI在涂料中的分散性。图5是填充有PANI/CNT/HEDP纳米复合材料的涂层在3.5%NaCl水溶液中对低碳钢的防护机理示意图。通过对掺杂有机膦酸的PANI/CNT进行纳米包覆,结果表明PANI的防腐机理是纳米阻隔、阳极保护和阴极抑制共同作用的。崔世宏[31]在高氯酸体系中通过原位聚合制备了CNT/PANI复合材料。利用电化学工作站研究了不同比例的碳纳米管/初级掺杂的碳纳米管纳米复合材料的耐腐蚀性能。结果表明,包覆CNT/初级掺杂PANI膜的阻抗弧半径大于包覆CNT或初级掺杂PANI膜的阻抗弧半径,表明由一定比例的碳纳米管和PANI制备的产物在工作电极表面具有比纯CNT或初级掺杂PANI膜更好的耐腐蚀性。原因有二:首先,复合材料中PANI的长链碳结构与CNT的管状结构相结合,使得腐蚀性介质(O2、H2O、Cl-)的扩散路径更加曲折[62]。其次,复合材料中的PANI可以同时与金属接触,促使金属表面形成钝化膜,CNT与PANI的共同存在促进了钝化膜的形成。

图5

图5   PANI/CNT/HEDP涂层在3.5%NaCl水溶液中对低碳钢的防腐机理示意图[60]

Fig.5   Schematic diagram of anti-corrosion mechanism of PANI/CNT/HEDP coating on low carbon steel in 3.5%NaCl aqueous solution[60]: (a) nanobarrier effect, (b) inhibitor effect, (c) cathodic suppression, (d) anodic protection


4.3 无机物/PANI复合材料

Situ等[63]通过化学氧化聚合制备了不同质量比的PANI-TiN纳米复合材料(PANI-TiN)。采用交流阻抗谱和极化曲线测试了PANI-TiN有机-无机复合环氧涂层的电化学腐蚀性能。结果表明,当苯胺单体与TiN的质量比为1∶0.2时,制备的有机-无机复合涂层具有最好的耐蚀性,其阻抗值比纯环氧基体提高了1~2个数量级。通过对锈层化学成分的分析,作者认为复合涂层的耐蚀机理主要为高分散的PANI的钝化缓蚀作用和无机纳米材料的迷宫效应。冯江波等[64]通过原位聚合法将PANI包覆在不同粒径的SiO2表面,制备出PANI/SiO2复合材料,并将其添加到环氧树脂涂料中制备防腐涂料。研究表明,随着颗粒尺寸的增大,涂层的附着力、抗冲击性和耐磨性进一步提高。添加400目PANI/SiO2粒子制备的环氧涂层结构致密,PANI对金属也能起到很好的钝化作用。如图6所示,涂层在3.5%NaCl水溶液中浸泡30 d后仍能起到良好的防腐作用。400目PANI/SiO2-环氧涂层具有较高的腐蚀电位(Ecorr为-0.567 V)和最低的腐蚀电流密度(Icorr为1.89 × 10-8 A·cm-2)。PANI/SiO2-环氧涂层增强金属腐蚀防护的机理主要为:PANI本身的电化学活性;PANI/SiO2复合涂层具有较强的疏水性和不渗透性,可有效防止H2O或H+与金属基体的接触,减缓阴极腐蚀速率;纳米SiO2有效填充涂层内部的空隙,降低涂层的孔隙率。刘小平[65]通过原位聚合法制备了不同比例的i-PANI/MoS2纳米粒子,并通过共混法将i-PANI/MoS2纳米粒子加入到环氧树脂中,制备了具有夹层结构的PANI改性MoS2/环氧复合涂层。采用电化学方法研究了不同添加量的原位聚合i-PANI/MoS2纳米粒子对环氧复合涂层耐蚀性能的影响。结果表明,8% i-PANI/MoS2-7/EP的最大腐蚀电压为-0.131 V,最小腐蚀电流密度为1.71 × 10-7 A·cm-2,耐蚀性最好。防腐机理在于:MoS2纳米片在涂料中层层堆叠,形成致密的隔离层,可阻止小分子(水分子、Cl-等)腐蚀介质的通过,起到物理隔绝作用;PANI能促进铁基金属(包括铁、碳钢和不锈钢)的钝化,并使其电位保持在钝化区,从而大大降低金属的腐蚀速率。二者协同作用,最大限度发挥环氧复合涂层在极端环境下的防腐效果。

图6

图6   PANI/SiO2-环氧涂层的Tafel图[64]

Fig.6   Tafel curves of PANI/SiO2-epoxy coating[64]


4.4 有机物/PANI复合材料

具有电子给体原子(N、P、S、O)的有机分子是涂层中有效的腐蚀抑制化合物,如咪唑类:苯并三氮唑(BTA)和苯并咪唑(BIM)[66]。赵一帆[67]通过化学氧化法获得分散性良好的植酸掺杂PANI纳米纤维,并在其表面吸附缓蚀剂BTA,纳米PANI纤维对BTA的负载率可达10.3%,并制备了不同浓度的PANI-PA-NFs/BTA环氧涂料。EIS测试结果表明,在环氧涂层中添加2% BTA掺杂的PANI纳米纤维具有优异的耐腐蚀性能和一定的自修复功能。继而探索了PANI-PA-NFs/BTA环氧涂层的缓蚀机理(图7):BTA掺杂的PANI纳米纤维可以将BTA的防腐作用和PANI的钝化作用有机地结合起来,从而赋予涂层优异的耐腐蚀性能。车颖利[68]采用2%甲硫氨酸合成PANI-甲硫氨酸-2-巯基苯并咪唑复合材料。电化学测试结果表明,含5%的2-巯基苯并咪唑的复合涂层防腐效果最好,最高腐蚀电位为0.288 V,最低腐蚀电流密度为6.68 × 10-11 A·cm-2,最大电荷转移电阻为8.40 × 107 Ω,最高孔隙电阻为6.85 × 106 Ω,涂层耐蚀性能最好。复合涂层的防腐机理是PANI-甲硫氨酸-2-巯基苯并咪唑复合物在涂层受损时具有修复作用,2-巯基苯并咪唑较高的防腐效率是由于分子结构中同时存在S和N原子。甲基中孤对电子是电子给体,增加了2-巯基苯并咪唑的电子密度。

图7

图7   PANI-PA-NFs/BTA抑制机理示意图[67]

Fig.7   Schematic diagram of PANI-PA-NFs/BTA inhibition mechanism[67]


5 存在的问题及展望

导电性聚合物自引入金属腐蚀与防护领域以来,其高导电性对防护基体耐腐蚀性能的影响往往被视为“双刃剑”。PANI作为防腐领域应用最广泛的导电聚合物之一,主要通过氧化还原作用促使金属表面形成致密的氧化膜,使金属处于钝化区,从而降低腐蚀速率。PANI的氧化还原作用要求它在涂层中形成具有高导电性的导电网络。在涂覆强导电涂层的金属基材表面,首先,掺杂改性可以使复合材料高度分散和活化,从而更好地中和并防止基材的电位上升。其次,通过添加纳米颗粒,可以有效降低材料的电导率,从而有效避免电偶腐蚀的风险。

作为一种新型复合材料,PANI复合材料仍然面临许多挑战:(1) 到目前为止,仍未有一种能全面解释PANI防腐蚀作用的明确机理。其防腐机理仍需进一步研究,以形成完整系统的理论体系,为后续功能化PANI材料的开发和防腐新技术的应用提供理论基础。(2) 由于PANI本身的多孔性和低附着力,必须与其他组分复配才能达到理想的防腐性能。但是PANI复合材料的制备存在工艺复杂,同时破乳剂挥发和滤液排放时存在污染环境等诸多问题。在实际应用过程中,环境因素(如湿度、温度、pH等)对防腐性能有很大影响,但目前这方面的研究很少,急需加强这方面的深入研究。为了由被动变为主动,可以用缓蚀效果好的掺杂剂对PANI进行改性,制备具有主动保护功能的“智能”防腐材料:即在PANI中掺杂具有缓蚀作用的掺杂剂,将PANI作为缓蚀剂的记忆体,按需释放缓蚀剂[69]。相信随着研究的深入,复合材料的性能会不断提高,开发长期稳定、耐腐蚀性强的“智能”PANI复合防腐材料将是未来的研究趋势。

参考文献

Samadi A, Xie M, Li J L, et al.

Polyaniline-based adsorbents for aqueous pollutants removal: a review

[J]. Chem. Eng. J., 2021, 418: 129425

[本文引用: 1]

Kandpal R, Shahadat M, Ali S W, et al.

Material specific enrichment of electroactive microbes on polyaniline-supported anodes in a single chamber multi-anode assembly microbial fuel cell

[J]. Mater. Res. Bull., 2023, 157: 111983

Yu L, Li D, Xu Z Y, et al.

Polyaniline coated Pt/CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI)

[J]. Chemosphere, 2023, 310: 136685

[本文引用: 1]

Duan X H, Duan Z H, Zhang Y J, et al.

Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy

[J]. Sens. Actuators, 2022, 369B: 132302

[本文引用: 1]

Albdiry M, Al-Nayili A.

Ternary sulfonated graphene/polyaniline/carbon nanotubes nanocomposites for high performance of supercapacitor electrodes

[J]. Polym. Bull., 2022, 80: 8245

[本文引用: 1]

Yu Y T, Liu Y J.

Research progress in preparation of ferrite/polyaniline absorbing composites by in situ polymerization

[J]. J. Mater. Eng., 2022, 50(5): 90

[本文引用: 2]

于永涛, 刘元军.

原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展

[J]. 材料工程, 2022, 50(5): 90

DOI      [本文引用: 2]

电磁污染已成为继空气污染、水污染和噪声污染之后的第四大污染, 吸波材料因其吸收和衰减特性, 可以作为解决电磁污染的有效手段。聚苯胺(PANI)作为一种电阻损耗型吸波材料, 可以满足吸波材料"厚度薄"、"质量轻"的发展理念, 但由于阻抗匹配度差, 吸波性能并不理想。铁氧体作为一类传统的磁损耗型吸波材料, 因其密度较高使其适用范围受到限制。高密度的铁氧体与低密度的聚苯胺复合制备的吸波材料, 不仅可以调整复合材料的密度, 而且还能改善复合材料的阻抗匹配, 提高铁氧体/聚苯胺复合材料的吸波性能。本文首先探讨了聚苯胺以及铁氧体/聚苯胺复合材料的制备方法, 其次阐述了铁氧体/聚苯胺复合材料的吸波机理。然后分别归纳了尖晶石型、磁铅石型、石榴石型铁氧体与聚苯胺制备的复合材料在吸波领域的研究进展。最后指出铁氧体/聚苯胺复合材料应趋向于电磁仿真和多元复合化的方向发展。

Liu S, Hu J Y, Wu D S, et al.

Preparation of spunlaced viscose/PANI-ZnO/GO fiber membrane and its performance of photocatalytic decolorization

[J]. J. Ind. Text., 2022, 51(suppl.5) : 7359S

[本文引用: 1]

Yao Q, Liu L, Meng F D, et al.

Progress on acid doped PANI applied in light alloy anticorrosive coating

[J]. New Chem. Mater., 2021, 49(10): 58

[本文引用: 1]

姚 茜, 刘 莉, 孟凡帝 .

酸掺杂聚苯胺在轻合金防腐涂层中的研究进展

[J]. 化工新型材料, 2021, 49(10): 58

[本文引用: 1]

Hassen M M, Ibrahim I M, Abdullah O G, et al.

Improving photodetector performance of PANI nanofiber by adding rare-earth La2O3 nanoparticles

[J]. Appl. Phys., 2023, 129A: 135

[本文引用: 1]

Viehbeck A, Deberry D W.

Inhibition of localized corrosion as determined by a galvanodynamic method

[J]. J. Electrochem. Soc., 1984, 131: 1844

[本文引用: 1]

Wang H H, Qin X, Fei G Q, et al.

Optimization of stability and properties of waterborne polyaniline-graft-poly (vinyl alcohol) nanocomposites with controllable epoxy content

[J]. Colloid Polym. Sci., 2018, 296: 585

[本文引用: 1]

Sun J X.

Preparation and corrosion resistance of graphene-based anti-corrosive coatings

[D]. Hohhot: Inner Mongolia University, 2021

[本文引用: 1]

孙佳欣.

石墨烯基复合防腐涂料的制备及性能研究

[D]. 呼和浩特: 内蒙古大学, 2021

[本文引用: 1]

Jeyaprabha C, Sathiyanarayanan S, Phani K L N, et al.

Investigation of the inhibitive effect of poly(diphenylamine) on corrosion of iron in 0.5M H2SO4 solutions

[J]. J. Electroanal. Chem., 2005, 585: 250

[本文引用: 1]

Pour-Ali S, Dehghanian C, Kosari A.

In situ synthesis of polyaniline-camphorsulfonate particles in an epoxy matrix for corrosion protection of mild steel in NaCl solution

[J]. Corros. Sci., 2014, 85: 204

[本文引用: 1]

Bilal S, Gul H, Gul S, et al.

One pot synthesis of highly thermally stable poly(2-methylaniline) for corrosion protection of stainless steel

[J]. Iran. J. Sci. Technol., 2018, 42A: 1915

[本文引用: 1]

Akbarzadeh S, Ramezanzadeh M, Ramezanzadeh B, et al.

Fabrication of highly effective polyaniline grafted carbon nanotubes to induce active protective functioning in a silane coating

[J]. Ind. Eng. Chem. Res., 2019, 58(44): 20309

DOI     

Neat silane coatings only provide barrier protection for the substrate subjected to corrosive media; therefore, the inclusion of efficient corrosion inhibitor in silane coating is vital to achieving active protection at defect sites of coatings. Elucidating the role of polyaniline (PANI) as a modifier for functionalized carbon nanotubes (CNTs) in the silane matrix to achieve active protection is the aim of this study. Different methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, zeta potential (ZP), and field emission scanning electron microscopy (FESEM) were employed to examine the structure of functionalized CNTs. FESEM images showed an increase in the diameter of nanotubes after modification proving the good grafting of PANI on the CNTs' surface, which was also confirmed by Raman, FTIR, and XRD measurements. Electrochemical impedance spectroscopy (EIS) was conducted on intact and scratched coatings. Results revealed a dual active-barrier effect of PANI grafted on CNTs in the silane coating protection.

Shah A U H A, Kamran M, Bilal S, et al.

Cost effective chemical oxidative synthesis of soluble and electroactive polyaniline salt and its application as anticorrosive agent for steel

[J]. Materials, 2019, 12: 1527

[本文引用: 1]

Thomas K A, Nair S, Rajeswari R, et al.

Electrochemical behaviour of PANI/polyurethane antifouling coating in salt water studied by electrochemical impedance spectroscopy

[J]. Prog. Org. Coat., 2015, 89: 267

[本文引用: 1]

Perrin F X, Phan T A, Nguyen D L.

Synthesis and characterization of polyaniline nanoparticles in phosphonic acid amphiphile aqueous micellar solutions for waterborne corrosion protection coatings

[J]. J. Polym. Sci., 2015, 53A: 1606

[本文引用: 1]

Li Y F, Li J Y, Gao X H, et al.

Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy

[J]. Appl. Surf. Sci., 2018, 462: 362

[本文引用: 1]

Lei Y H, Qiu Z C, Tan N, et al.

Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution

[J]. Prog. Org. Coat., 2020, 139: 105430

[本文引用: 1]

Sumi V S, Arunima S R, Deepa M J, et al.

PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel

[J]. Mater. Chem. Phys., 2020, 247: 122881

[本文引用: 1]

Zhang Y J, Shao Y W, Liu X L, et al.

A study on corrosion protection of different polyaniline coatings for mild steel

[J]. Prog. Org. Coat., 2017, 111: 240

[本文引用: 4]

Caldona E B, De Leon A C C, Pajarito B B, et al.

Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites

[J]. Appl. Surf. Sci., 2017, 422: 162

[本文引用: 1]

Hao Y S, Zhao Y F, Li B, et al.

Self-healing effect of graphene@PANI loaded with benzotriazole for carbon steel

[J]. Corros. Sci., 2020, 163: 108246

[本文引用: 1]

Li W.

Electrodeposition of PANI/MWCNT coatings on stainless steel and their corrosion protection performances

[J]. Int. J. Electrochem. Sci., 2018, 13: 1367

Zhu A P, Wang H S, Sun S S, et al.

The synthesis and antistatic, anticorrosive properties of polyaniline composite coating

[J]. Prog. Org. Coat., 2018, 122: 270

[本文引用: 1]

Zhang Z H, Yuan T H, Zhang D Q, et al.

Research progress on anticorrosion performance of polyaniline composites

[J]. Corros. Sci. Prot. Technol., 2017, 29: 73

[本文引用: 1]

章振华, 袁庭辉, 张大全 .

聚苯胺复合材料防腐性能研究进展

[J]. 腐蚀科学与防护技术, 2017, 29: 73

DOI      [本文引用: 1]

综述了聚苯胺复合材料制备方法,并对聚苯胺及其复合材料的防腐性能研究现状进行了简单介绍。对聚苯胺复合防腐材料今后发展进行了展望。

Cao Y, Smith P.

Liquid-crystalline solutions of electrically conducting polyaniline

[J]. Polymer, 1993, 34: 3139

[本文引用: 1]

Macdiarmid A G, Chiang J C, Halpern M, et al.

Aqueous chemistry and electrochemistry of polyacetylene and Polyaniline: application to rechargeable batteries

[J]. Polym. Prepr., 1984, 25: 248

[本文引用: 1]

Cui S H.

Preparation and properties of one-dimensional carbon nanomaterials/polyaniline composites

[D]. Qingdao: Qingdao University of Science and Technology, 2021

[本文引用: 4]

崔世宏.

一维碳纳米材料/聚苯胺复合材料的制备与性能研究

[D]. 青岛: 青岛科技大学, 2021

[本文引用: 4]

Zhang L.

Preparation and properties of poly aniline/graphite nanosheets composite conductive and anticorrosive coatings

[D]. Xi'an: Chang'an University, 2016

[本文引用: 1]

张 磊.

聚苯胺/石墨纳米片复合导电防腐涂料制备及性能研究

[D]. 西安: 长安大学, 2016

[本文引用: 1]

Fang Z Q.

Polyaniline-modified basalt scale/rockwool waste and the application in marine anticorrosion

[D]. Haikou: Hainan University, 2021

[本文引用: 1]

方志强.

聚苯胺修饰的玄武岩鳞片/岩棉废料及其在海洋防腐中的应用

[D]. 海口: 海南大学, 2021

[本文引用: 1]

Xia X Q, Shen Y F, Guo W Y, et al.

Progress in synthesis of polyaniline materials by lotion polymerization

[J]. Gans. Pet. Chem. Ind., 2010, 24(4): 1

[本文引用: 1]

夏小倩, 沈玉芳, 郭文勇 .

乳液聚合法合成聚苯胺材料进展

[J]. 甘肃石油和化工, 2010, 24(4): 1

[本文引用: 1]

Gao X K.

Preparation of polyaniline/graphene /polyurethane water-based antistatic coatings

[D]. Jinan: Qilu University of Technology, 2019

[本文引用: 1]

高学凯.

聚苯胺/石墨烯/聚氨酯水性防静电涂料的制备研究

[D]. 济南: 齐鲁工业大学, 2019

[本文引用: 1]

Zhang Y.

Study on corrosion protection of polypyrrole based composite filler/epoxy resin coating on carbon steel

[D]. Taiyuan: Taiyuan University of Technology, 2022

[本文引用: 1]

张 育.

聚吡咯基复合填料/环氧树脂涂层对碳钢的腐蚀防护研究

[D]. 太原: 太原理工大学, 2022

[本文引用: 1]

Wang X, Hou L, Zhang D X, et al.

Research and application of polyaniline in anti-corrosion

[J]. Surf. Technol., 2019, 48: 208

[本文引用: 1]

王 霞, 侯 丽, 张代雄 .

聚苯胺在防腐方面的研究及应用现状

[J]. 表面技术, 2019, 48: 208

[本文引用: 1]

Ullah R, Bilal S, Shah A U H A, et al.

Synthesis and characterization of polyaniline doped with polyvinyl alcohol by inverse emulsion polymerization

[J]. Synth. Met., 2016, 222: 162

[本文引用: 1]

Ćirić-Marjanović G.

Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications

[J]. Synth. Met., 2013, 177: 1

[本文引用: 1]

Tan D X, Zou X, Jian J T, et al.

Synthesis of PANI by lyotropic liquid crystal template and its electrical property

[J]. New Chem. Mater., 2020, 48(4): 129

[本文引用: 1]

谭德新, 邹 夏, 简杰婷 .

溶致液晶模板法合成聚苯胺及其导电性能研究

[J]. 化工新型材料, 2020, 48(4): 129

[本文引用: 1]

Elkais A R, Gvozdenović M M, Jugović B Z, et al.

Electrochemical synthesis and characterization of polyaniline thin film and polyaniline powder

[J]. Prog. Org. Coat., 2011, 71: 32

[本文引用: 1]

Xu X T, Ji L Z, Chen S W, et al.

Effect of polyaniline-TiO2 composite film on corrosion resistance of 316L stainless steel

[J]. Plat. Finish., 2023, 45(1): 28

[本文引用: 1]

许秀婷, 吉连忠, 陈书文 .

聚苯胺-TiO2复合膜对316L不锈钢耐蚀性能的影响

[J]. 电镀与精饰, 2023, 45(1): 28

[本文引用: 1]

Qi G G, Sun J Z, Zhou Q Y, et al.

Advance in enzyme-catalyzed ploymerization

[J]. J. Funct. Polym., 2002, 15: 347

[本文引用: 1]

齐耿耿, 孙建中, 周其云 .

酶催化聚合研究进展

[J]. 功能高分子学报, 2002, 15: 347

[本文引用: 1]

Nabid M R, Shamsianpour M, Sedchi R, et al.

Enzyme-catalyzed synthesis of conducting polyaniline nanocomposites with pure and functionalized carbon nanotubes

[J]. Chem. Eng. Technol., 2012, 35: 1707

[本文引用: 1]

Lu Q, Zhao Q, Zhang H M, et al.

Water dispersed conducting polyaniline nanofibers for high-capacity rechargeable lithium-oxygen battery

[J]. ACS Macro Lett., 2013, 2: 92

[本文引用: 1]

Krutyakov Y A, Kudrinsky A A, Olenin A Y, et al.

Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline

[J]. Appl. Surf. Sci., 2010, 256: 7037

[本文引用: 1]

Zeng X R, Zhang X H, Yang W, et al.

Study on protonic acid doping mechanism of polyaniline

[J]. J. Funct. Polym., 1992, 5: 25

[本文引用: 1]

曾幸荣, 张兴华, 杨卫 .

聚苯胺的质子酸掺杂机制的研究

[J]. 功能高分子学报, 1992, 5: 25

[本文引用: 1]

Zhou Z X, Xiao X X, Sun C Y, et al.

Research progress of modified polyaniline in anticorrosive coatings

[J]. China Surf. Eng., 2022, 35(1): 86

[本文引用: 1]

周志祥, 肖旭贤, 孙超远 .

改性聚苯胺在防腐涂层中的研究进展

[J]. 中国表面工程, 2022, 35(1): 86

[本文引用: 1]

Karakis M, Sac M, Erdem E, et al.

Synthesis and characterization of malonic acid-doped polyaniline

[J]. J. Appl. Electrochem., 1997, 27: 309

[本文引用: 1]

Yao Y C, Sun H, Zhang Y L, et al.

Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers

[J]. Prog. Org. Coat., 2020, 139: 105470

[本文引用: 1]

Yao Y C.

Preparation of polyaniline doped with different acids and study on the anticorrosion performance of its composite epoxy coating

[D]. Nanning: Guangxi University, 2020

[本文引用: 1]

姚尹超.

不同酸掺杂聚苯胺的制备及其在环氧防腐涂料的应用研究

[D]. 南宁: 广西大学, 2020

[本文引用: 1]

Liu S Y, Liu L, Li Y, et al.

Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating

[J]. J. Mater. Sci. Technol., 2020, 39: 48

DOI      [本文引用: 1]

N-alkylation of sulfosalicylic acid-doped polyaniline (PANI-SSA) was used to promote the anticorrosion performance of PANI-SSA/epoxy coating for 5083 Al alloy. PANI-SSA was modified with C5H11Br and C12H25Br in polar solvents IPA (isopropanol) and DMF (dimethylformamide), and then characterized by FTIR, XPS and sedimentation experiments. Results showed that alkanes were successfully linked onto the PANI-SSA chains. The compatibility between N-alkylated PANI-SSA and epoxy/xylene solution was improved. SEM results proved a better dispersion performance of N-alkylated PANI-SSA in epoxy coatings, with less holes and aggregations. Corrosion protection of the epoxy coatings incorporating PANI-SSA and N-alkylated PANI-SSA on 5083 Al alloy was studied by EIS and adhesion measurements in 3.5% NaCl solution. It turned out that the epoxy coating including C12H25Br-modified PANI-SSA in DMF has yielded the highest values of impedance modulus and best protective properties.

Zhang S Y, Lin X F, Qian J.

Preparation and anticorrosive performance of the polyaniline/strontium chromate composites

[J]. Paint Coat. Ind., 2013, 43(9): 7

[本文引用: 3]

张守一, 林旭峰, 钱 军.

聚苯胺/铬酸锶复合材料的制备及其环氧涂层防腐蚀行为研究

[J]. 涂料工业, 2013, 43(9): 7

[本文引用: 3]

Gao F, Luo Y F, Xu J H, et al.

Preparation of graphene oxide-based polyaniline composites with synergistic anticorrosion effect for waterborne polyurethane anticorrosive coatings

[J]. Prog. Org. Coat., 2021, 156: 106233

[本文引用: 1]

Liu S Y, Liu L, Wei X X, et al.

Oxide film formed on Al alloy beneath sulfosalicylic acid doped polyaniline incorporated into epoxy organic coating

[J]. Appl. Surf. Sci., 2020, 512: 144840

Li C, Li Y, Wang X, et al.

Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings

[J]. Corros. Sci., 2021, 178: 109094

[本文引用: 1]

Hayatgheib Y, Ramezanzadeh B, Kardar P, et al.

A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite

[J]. Corros. Sci., 2018, 133: 358

[本文引用: 3]

Li X L, Kong G, Che C S, et al.

Advances in research of modified graphene oxide in anticorrosive coatings on metals

[J]. Electroplat. Finish., 2021, 40: 929

[本文引用: 1]

黎晓琳, 孔 纲, 车淳山 .

改性氧化石墨烯在金属防腐蚀涂层中的研究进展

[J]. 电镀与涂饰, 2021, 40: 929

[本文引用: 1]

Ju H.

Preparation of polyaniline-graphene oxide composite and its application in anti-corrosion coatings

[D]. Nanjing: Nanjing University of Technology, 2020

[本文引用: 1]

居 浩.

聚苯胺-氧化石墨烯复合材料的制备及其在防腐涂料中的应用研究

[D]. 南京: 南京理工大学, 2020

[本文引用: 1]

Rui M, Jiang Y L, Zhu A P.

Sub-micron calcium carbonate as a template for the preparation of dendrite-like PANI/CNT nanocomposites and its corrosion protection properties

[J]. Chem. Eng. J., 2020, 385: 123396

[本文引用: 3]

Li X J, Wang J, Wei G, et al.

Application of carbon nanotubes in marine anti-corrosion coatings

[J]. New Chem. Mater., 2023, 51(6): 241

[本文引用: 1]

李学进, 王 娟, 魏 刚 .

碳纳米管在海洋防腐涂料中的应用

[J]. 化工新型材料, 2023, 51(6): 241

[本文引用: 1]

Fazli-Shokouhi S, Nasirpouri F, Khatamian M.

Polyaniline-modified graphene oxide nanocomposites inepoxy coatings for enhancing the anticorrosion and antifouling properties

[J]. J. Coat. Technol. Res. 2019, 16: 983

DOI      [本文引用: 1]

We report on the anticorrosion and antifouling properties of epoxy-based polyaniline (PANI)-graphene oxide nanosheets (GONs) paint coatings. PANI-based nanocomposites with different fractions of GONs were synthesized by an in situ polymerization process. Well-dispersed GONs were prepared using a modified Hummers' method in the presence of (NH4)(2)S2O8 as an effective oxidant. We employed a spontaneous in situ polymerization at a constant temperature of 0 degrees C using an ultrasonic bath to produce homogenous PANI-GON nanocomposites as characterized by X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM) techniques. The nanocomposites were incorporated into an epoxy resin with different fractions to form epoxy/PANI-GON paint coatings. The epoxy/PANI-GON dip coated on a carbon steel (grade St-37) substrate exhibited significant improvement of the anticorrosion and antifouling properties. Epoxy-12 wt% PANI-GON coating revealed the highest corrosion resistance of 2.70 x 10(6) ohm cm(2) after 192-h immersion in saline water measured by electrochemical impedance spectroscopy (EIS) technique. Such high corrosion resistance was attainable by inhibiting the diffusion process against the corrosive environment. Furthermore, higher protection against fouling was observed for epoxy 6 and 12 wt% PANI/GON as the most efficient antifouling composite coatings.

Situ Y, Ji W W, Liu C Y, et al.

Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings

[J]. Prog. Org. Coat., 2019, 130: 158

DOI      [本文引用: 1]

Novel polyaniline-titanium nitride (PANI-TiN) nanocomposites were synthesized by one step chemical oxidation polymerization at a low temperature and PANI-TiN/epoxy coatings with enhanced corrosion resistance were obtained based on the synergistic effect of TiN nanoparticles and PANI nanorods. PANI-TiN nanocomposites and resultant epoxy coatings were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Their anticorrosion performance in a 3.5 wt.% NaCl aqueous solution was investigated by the electrochemical impedance spectroscopy (EIS) and polarization curves. The results indicated that the corrosion resistance of PANI/epoxy coatings can be highly enhanced by introducing TiN nanoparticles to the PANI nanorods and the PANI-TiN/epoxy composite coating with 0.4 wt.% TiN (mass ratio to epoxy) exhibited the best corrosion protective performance, whose corrosion potential (E-corr = -0.338 V) was positively shifted by 0.235 V compared with pure epoxy matrix (E-corr = -0.573 V), and the corrosion current density was reduced by two orders of magnitude. The chemical structure of the rust layer and the anticorrosion mechanism were studied via X-ray diffraction analysis (XRD) and XPS. TiN nanoparticles showed a remarkably inhibiting effect on the agglomeration of PANI nanorods in epoxy coating. The corrosion resistance was attributed to the mixed mechanism of "passivation effect" of highly dispersed PANI and "labyrinth effect" of TiN nanoparticles.

Feng J B, Wang J P, Yuan H Y, et al.

Effect of PANI/SiO2 particle size on anti-corrosion properties of epoxy coating

[J]. Mater. Rep., 2021, 35: 24182

[本文引用: 3]

冯江波, 王景平, 苑慧莹 .

不同粒径PANI/SiO2对环氧涂层防腐性能的影响

[J]. 材料导报, 2021, 35: 24182

[本文引用: 3]

Liu X P.

Study on controllable preparation andanti-corrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating

[D]. Chongqing: Chongqing Technology and Business University, 2021

[本文引用: 1]

刘小平.

聚苯胺改性硫化钼/环氧复合涂层的可控制备及其防腐性能研究

[D]. 重庆: 重庆工商大学, 2021

[本文引用: 1]

Kasaeian M, Ghasemi E, Ramezanzadeh B, et al.

Construction of a highly effective self-repair corrosion-resistant epoxy composite through impregnation of 1H-Benzimidazole corrosion inhibitor modified graphene oxide nanosheets (GO-BIM)

[J]. Corros. Sci., 2018, 145: 119

[本文引用: 1]

Zhao Y F.

Study on preparation and anticorrosion mechanism of polyaniline Nano-self-healing coatings

[D]. Shenyang: Shenyang University of Chemical Technology, 2019

[本文引用: 3]

赵一帆.

聚苯胺纳米自修复涂层的制备及防腐机理研究

[D]. 沈阳: 沈阳化工大学, 2019

[本文引用: 3]

Che Y L.

Preparation and anti-corrosion performance of polyaniline composite materials

[D]. Shanghai: Tongji University, 2018

[本文引用: 1]

车颖利.

聚苯胺复合材料的制备及其防腐性能研究

[D]. 上海: 同济大学, 2018

[本文引用: 1]

Li Y P, Wang X H, Li J, et al.

Polyaniline-a new generation of environmentally friendly anticorrosion material

[J]. Mater. China, 2011, 30(8): 17

[本文引用: 1]

李应平, 王献红, 李季 .

聚苯胺—新一代环境友好防腐材料

[J]. 中国材料进展, 2011, 30(8): 17

[本文引用: 1]

/