中国腐蚀与防护学报, 2023, 43(6): 1189-1202 DOI: 10.11902/1005.4537.2022.393

综合评述

气相缓蚀剂分析方法研究进展

王泉润1,2, 侯进2, 侯保荣1, 田惠文,1

1.中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071

2.中国海洋大学化学化工学院 青岛 266100

Research Progress of Analytical Methods for Vapor Phase Inhibitors

WANG Quanrun1,2, HOU Jin2, HOU Baorong1, TIAN Huiwen,1

1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS, Institute of oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

通讯作者: 田惠文,E-mail:tianhuiwen@qdio.ac.cn,研究方向为海洋腐蚀与防护新材料

收稿日期: 2022-12-10   修回日期: 2023-01-04  

基金资助: 山东省重点研发计划 (科技示范工程).  2021SFGC0701
烟台市科技 (产业) 创新领军人才项目.  2021RC015

Corresponding authors: TIAN Huiwen, E-mail:tianhuiwen@qdio.ac.cn

Received: 2022-12-10   Revised: 2023-01-04  

Fund supported: Key Research and Development Program in Shandong Province.  2021SFGC0701
Yantai Science and Technology (Industry) Innovation Leading Talent Project.  2021RC015

作者简介 About authors

王泉润,男,2000年生,硕士生

摘要

气相缓蚀剂作为抑制金属大气腐蚀的主要手段之一,其效果出色、经济效益高,得以广泛使用,发展气相缓蚀剂分析方法,对气相缓蚀剂的发展有着重要的指导意义。本文阐述了气相缓蚀剂的分类情况,气相缓蚀剂的特点及性能,根据其性能介绍了对应的检测方法包括:挥发性测试、腐蚀失重法、电化学测试法、表面分析法和构效关系计算等。总结了气相缓蚀剂分析方法并展望了气相缓蚀剂检测方法的发展趋势。

关键词: 气相缓蚀剂性能 ; 气相缓蚀剂分类 ; 分析方法 ; 电化学测试法 ; 展望

Abstract

As one of the main means to inhibit atmospheric corrosion of metal, vapor phase inhibitor is more and more widely used because of its excellent corrosion preventive effect, higher cost performance and easy to use. The development of analytical methods for vapor phase inhibitors has important guiding significance for the mechanism research and development of new vapor phase inhibitors. This paper introduces the classification of two kinds of vapor phase inhibitor, and describes the characteristics, such as volatility, solubility, adsorption and corrosion inhibition of vapor phase inhibitor. In order to test the different properties of vapor phase inhibitors, several analytical methods were introduced. The volatility test is measured in terms of saturated vapor pressure. Due to the advantages of simple operation and intuitive results, mass loss analysis is widely used in the detection of vapor phase inhibitors and to verify the accuracy of other methods. Electrochemical measurements can reveal a lot of features related to the action of vapor phase corrosion inhibitors, has become the mainstream method. Surface morphological techniques can further explore the film forming mechanism of corrosion inhibitor on metal surface. In sum, the current analysis methods of vapor phase inhibitors are summarized, and the future development trend of vapor phase inhibitor analysis methods is prospected.

Keywords: performance of vapor phase inhibitor ; classification of vapor phase inhibitor ; analytical method ; electrochemical measurements ; prospect

PDF (774KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展. 中国腐蚀与防护学报[J], 2023, 43(6): 1189-1202 DOI:10.11902/1005.4537.2022.393

WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(6): 1189-1202 DOI:10.11902/1005.4537.2022.393

腐蚀是指金属材料在环境介质的作用下,逐渐产生损坏或变质现象,是一个表面电化学过程[1]。腐蚀会对材料的结构和性能产生负面影响,大多数金属结构的外观、强度和性能都会因腐蚀遭到破坏,是各行各业普遍存在的问题[2]。侯保荣等[3]对各行业的腐蚀问题进行了相关研究,研究估计中国的腐蚀成本约为21278亿元 (约3100亿美元),约占国内生产总值的3.34%,其中交通运输和电子行业的成本远高于其他行业。

在各种不同腐蚀类型中,大气腐蚀是存在最广泛的一种腐蚀,它造成的损失约占腐蚀总损失的50%以上[4]。防护大气腐蚀最有效的方法是将金属从腐蚀环境中分离出来。目前,可以通过永久防护和临时防护两种方法实现对金属的保护。永久防护包括使用合金、金属涂层、电镀、阴极保护和阳极保护;临时防护包括涂蜡、油脂、气相缓蚀剂和干燥剂[5]。因气相缓蚀剂的生产成本低、防腐蚀效率出色、使用操作简便,所以在保护金属、合金等方面的应用越来越受欢迎[6~8]。同时,以气相缓蚀剂为基础的气相防锈技术也得到了更多的应用,这些技术提高了工作效率和金属的使用寿命,降低了石油和天然气、军事、汽车、电子、电气和其他工业部门的腐蚀防护总成本[9, 10]

随着气相缓蚀剂广泛的应用,其性能评价和分析方法受到极大的重视。对于气相缓蚀剂性能的评价,目前建立了多种方法,但在实际评价和分析过程中,仍应结合气相缓蚀剂不同类型和不同结构、实际使用环境的条件,探究气相缓蚀剂不同方面的性能和经济效益等方面,选择最合适的方法。

1 气相缓蚀剂的特点及性能

气相缓蚀剂 (VPI),又叫挥发性缓蚀剂 (VCI),能在常温下自动挥发出特殊气体,依靠其挥发的缓蚀剂分子或基团在金属表面形成氧化膜、沉淀膜或分子及离子的吸附,从而抑制金属腐蚀过程的电化学反应,减小腐蚀电流,达到缓蚀的目的[5]

1.1 特点

与其它防腐蚀方法相比,气相缓蚀剂具有以下优点[11, 12]:(1) 挥发的气相缓蚀剂气体充满整个密闭空间,可以到达防锈材料不易涂覆处 (金属的内腔、缝隙、小孔等),使用气相缓蚀剂无需考虑金属的形状和结构,这是目前任何一种方法都不能实现的,也是气相缓蚀剂最大的特点。(2) 气相缓蚀剂防护技术操作简单,性价比最高,可用于大大小小的金属零件和设备。(3) 气相缓蚀剂在金属表面会形成极薄的膜,启用金属包装时,金属表面的气相缓蚀剂会快速挥发,无需擦除或清洗就可立刻投入使用。(4) 气相缓蚀剂和其他防护技术 (如阴极保护等) 相兼容,两者结合使用时,不仅会降低金属的腐蚀速率;也降低了阴极保护所需的电力需求。

但是,气相缓蚀剂的使用期限较难预测,无法精确计算剩余的防护时间,导致存在浪费或防护不到位的问题。

1.2 挥发性

挥发性是气相缓蚀剂发挥作用的前提,是气相缓蚀剂一个重要的性能指标,决定了VCI防锈作用的诱导性、持久性和有效距离[4]。不同气相缓蚀剂因其饱和蒸气压和分子结构的不同,挥发到金属表面的方式也各不相同,大致可分为两种[13]:(1) VCI在到达金属表面前水解或解离生成挥发性缓蚀基团,在空气中达到饱和后,吸附在金属表面进行保护。(2) VCI在空气中不发生解离,在VCI分子挥发到金属表面,接触到薄层液膜后,才水解或解离出缓蚀基团进行保护。

气相缓蚀剂应用于密闭或半密闭空间,需在一定温度、持续时间内确保空间中气相缓蚀剂维持一定浓度,能够挥发吸附至金属表面起缓蚀作用。因此VCI应具有一定饱和蒸汽压,其挥发性也由饱和蒸汽压衡量。饱和蒸汽压低的VCI,有效作用距离短、挥发速率慢、诱导期长,会使金属表面的VCI未达所需浓度前就被腐蚀,但具有更持久的防锈能力;饱和蒸汽压大的VCI,有效作用距离长、挥发速率快、诱导期短,能快速挥发至金属表面抑制早期腐蚀过程,但因其挥发速率过快,耗量大,持久性能大大降低[14]。故气相缓蚀剂要有合适的饱和蒸汽压才能达到最佳防护效果。

不同气相缓蚀剂的蒸汽压差别较大,如何根据气相缓蚀剂的饱和蒸汽压和使用要求,调控其挥发性,是一个重要的环节,常用的方法有:(1) 将具有不同挥发性的气相缓蚀剂进行复配从而改变其挥发性;(2) 将气相缓蚀剂吸附在无机多孔载体上。

1.3 溶解度

气相缓蚀剂的溶解度对其应用性能也有重要的影响。气相缓蚀剂在溶液中需要有一定的溶解性,这样才能快速饱和已吸湿的金属表面。若溶解度过大,吸附在金属表面的缓蚀剂分子会发生脱附现象,不能形成有效的吸附膜;若溶解度过小,金属表面的水介质中能溶解的缓蚀剂过少,在金属表面不能形成有效、完整的吸附膜,有时不但达不到缓蚀的目的,反而会加速金属腐蚀[15]

气相缓蚀剂还可配成气相缓蚀溶液使用,所以在溶剂中需要一定的溶解性,来满足其使用需求。气相缓蚀剂在有机溶剂中的溶解度,关系到其生产过程和使用过程,在生产过程中为提高气相缓蚀剂的产率,要选择对气相缓蚀剂溶解性小的溶剂。

1.4 吸附性

VCI分子可以通过物理吸附或化学吸附或两者兼有的方式吸附在金属表面[16]。物理吸附过程是带电的金属表面与VCI分子间发生静电相互作用。化学吸附过程是通过VCI分子结构中P、N、O、S等原子的孤对电子与金属表面进行配位完成的[17]。金属表面与VCI分子间相互作用的性质可以利用各种吸附等温线模型进行讨论,吸附等温线在理解VCI分子吸附过程可以提供一些关键信息,可用于确定吸附自由能标准值及其与表面覆盖率的关系[18]。目前,主要用于气相缓蚀剂吸附研究的平衡吸附等温线有Langmuir、Freundlich、Temkin、Floy-Huggins等。其中Langmuir吸附等温线和Freundlich吸附等温线应用较广泛,前者适用于均匀吸附过程,后者适用于非均相体系,特别是有机缓蚀剂。

Li等[19]采用Langmuir吸附等温式和Freundlich吸附等温式对实验数据进行拟合,结果表明核桃青皮提取物 (WGHE) 和木质素磺酸钠 (SLS) 具有协同作用,WGHE+SLS混合物的吸附强度大于其单一组份。Chen等[20]利用Langmuir吸附等温式描述吸附行为,并利用Temkin吸附模型进行验证,发现吸附膜层间存在横向斥力。Chen等[21]通过Langmuir吸附等温式结合接触角表征可得,lsCDs和N-lsCDs缓蚀剂通过物理化学共吸附作用形成一层保护膜,从而抑制碳钢的缓蚀过程。

1.5 缓蚀性

气相缓蚀剂分子中应该含有一个或一个以上的缓蚀基团,以使气相缓蚀剂具备一定的缓蚀性能。气相缓蚀剂的缓蚀效果与其分子结构密切相关,主要是受到缓蚀基团的影响。气相缓蚀剂挥发后遇水解离出保护基团,其未配对电子或孤对电子可以使VCI分子很好地吸附在金属表面,发生钝化阻止金属的腐蚀;VCI分子在金属表面形成单分子层,排斥水分子防止金属腐蚀。起决定性作用的是缓蚀基团,其影响主要表现在以下几方面[22]:(1) 极性强、能与金属配位的缓蚀基团吸附性强,缓蚀性能高。(2) 缓蚀基团具有选择性,如F对Al和Mg有保护作用,却会加速钢和Cu的腐蚀。(3) 复配时缓蚀基团之间的相互作用也会影响缓蚀效果。

2 气相缓蚀剂的分类

2.1 按化学组成分类

无机缓蚀剂是最为常用的VCI防腐蚀技术,在许多应用中得到广泛的研究。无机缓蚀剂一般用于酸性气体或氯离子含量高的环境中。无机缓蚀剂分子是通过吸附在金属表面,抑制腐蚀介质对金属材料的腐蚀,来达到缓蚀的目的。铬酸盐类无机缓蚀剂在VCI中表现非常出色,但六价铬酸盐会产生许多环境问题,Cr6+在人体和动物体内积累,会导致癌变,因此铬酸盐类缓蚀剂的使用已大大减少。

有机缓蚀剂因其适用范围广、溶解度高、相容性好、毒性相对无机缓蚀剂较低,在腐蚀防护领域广泛应用。有机缓蚀剂是由VCI分子在电解质/金属界面上吸附形成不溶层来缓蚀的,其吸附一般为化学物理吸附,可以同时抑制阳极和阴极反应。有机缓蚀剂中的杂原子 (如N、O、S等) 在抑制腐蚀反应中有重要作用。在有机缓蚀剂中,基团的抑制作用最显著,氨基、甲氧基、羟基等取代基增加了活性位点的电子密度,进而提高有机缓蚀剂的缓蚀性能;相反,氰基、羧基、酯基等取代基会降低活性位点的电子密度,导致其缓蚀性能降低[23, 24]

聚合物缓蚀剂是在金属表面形成保护层来防止腐蚀。聚合物缓蚀剂具有优良的缓蚀效果和绿色环保等优点,是近年来的主要研究目标。典型的聚合物缓蚀剂主要是有机膦酸、聚乙烯、聚天冬氨酸和一些天然高分子物质[25]

绿色缓蚀剂因其绿色环保、成本低、可持续发展和缓蚀效果良好的特点,近年来在缓蚀领域得以广泛应用。可以通过液-液萃取等各种工艺从植物中提取出天然化合物,纯化后用作气相缓蚀剂。这些提取物由大量有机化合物组成,其中含有O、N、P、S等极性基团,可以吸附在金属表面形成一层保护膜。Premkumar等[26]利用提取出的薄荷醇作为气相缓蚀剂,用于在NaCl中抑制低碳钢的腐蚀。Poongothai等[27]从干树皮提取出决明子等的木皮油,在NaCl和SO2环境作为低碳钢和Cu的气相缓蚀剂。

2.2 按电化学腐蚀类型分类

气相缓蚀剂按电化学腐蚀类型可分为阳极缓蚀剂、阴极缓蚀剂和混合型缓蚀剂。阳极缓蚀剂也称为钝化缓蚀剂,通过抑制金属腐蚀的阳极反应进行防护。VCI分子的阴离子和金属表面的金属阳离子发生钝化,钝化过程VCI分子通过吸附及在金属表面被动形成氧化层,发生较大的阳极位移来延缓金属腐蚀。铬酸盐、亚硝酸盐和硝酸盐等阳极缓蚀剂可以在无氧环境下在金属表面形成氧化膜[28];钼酸盐、钨酸盐和磷酸盐等阳极缓蚀剂只能在含氧环境中形成氧化膜。但阳极缓蚀剂主要缺点在于,缓蚀剂浓度略下降时,金属的腐蚀速率会大大上升。

阴极缓蚀剂是通过抑制金属腐蚀的阴极反应进行防护。VCI分子通过阳离子迁移到阴极区,与阴离子反应形成沉淀吸附在金属表面,减少活性阴极面积,使金属表面的阻抗增加,降低了导致腐蚀的化学物质的扩散速率,以防止金属进一步腐蚀。肼和亚硫酸钠等阴极缓蚀剂通过与周围氧分子发生化学反应消耗氧分子,从而减缓阴极反应[29]。阴极缓蚀剂一般用于碱性介质中,锑、砷和锌等阻碍了阴极析氢反应中氢离子的结合,易与氢氧根离子沉淀。

混合型缓蚀剂是典型的成膜化合物,可以同时抑制阳极反应和阴极反应过程。混合型缓蚀剂大多是具有高电负性的有机化合物,如氮、硫或乙炔醇等在金属表面形成一层保护膜,延缓金属腐蚀过程。

3 气相缓蚀剂的挥发性测试

气相缓蚀剂的挥发性一般用饱和蒸汽压来衡量。但气相缓蚀剂的常温蒸汽压通常都很小,使用一般的仪器不宜测量,误差较大,其测量方法也多种多样。

对于初始状态为液态的气相缓蚀剂,先将待测气相缓蚀剂放入恒温容器内保存,再向容器内充入惰性气体,测量所用气体的体积,即可获得待测液态气相缓蚀剂的气体含量或惰性气体的损失量。若容器中引入的惰性气体是饱和的,则可计算出液态气相缓蚀剂的饱和蒸汽压[30]

对于初始状态为固态的气相缓蚀剂,目前发展出多种测试方法,这些方法分为动态法、静态法、表面蒸发法、沸点法[13]

(1) Regnault动力学方法:将已称重的气相缓蚀剂在无氧气和氮气流动的条件下,放入装置中恒温加热,测量气相缓蚀剂的重量损失。气相缓蚀剂在不同温度下的蒸发速率可以通过公式计算[13, 31],蒸汽压的值通过绘制蒸汽压与温度的关系图得到。

(2) 克努增法 (Knudsen):高真空条件下测定气相缓蚀剂的饱和蒸汽压。实验原理为:VCI置于有一个小孔的盒内,盒外为真空,VCI分子从小孔不断向外扩散。若扩散到小孔处的气体分子能全部经小孔逸出,根据气体分子运动论,由实验测得的固体温度、小孔面积和单位时间盒中VCI减少量,便可求得固体的饱和蒸汽压[31, 32]。因蒸汽压小,故可视为理想气体,根据气体分子运动论,可得VCI的饱和蒸汽压:

P=mS2πRTM12

式中,M为VCI的相对分子量;R为气体通用常数;T为气体所处的温度;m为VCI在单位时间经小孔逸出的质量;S为小孔面积。根据上式可以测定VCI在不同温度下的饱和蒸汽压,通过调节小孔面积的大小,可以应用于不同蒸汽压范围的测定。

(3) 流失筒法 (Torsion effusion):使气相缓蚀剂在一个小的玻璃的“流失筒”内在一定温度下挥发,是基于VCI分子在饱和蒸汽压下从小孔进入真空时产生的作用力进行测试。“流失筒”内有两个轻玻璃球,球体上各有一个小孔,位于对称、相反方向上。先将测量室抽真空,当气相缓蚀剂挥发时,其蒸汽自小孔喷出产生反作用力,又因两孔方向相反,对纤维丝产生旋转力矩。转动角度的大小与蒸汽压成一定的比例关系,可通过下式求出气相缓蚀剂的蒸汽压[33]

Pt=2KBf1d1a1+f2d2a2

式中,Pt为蒸汽压;K为纤维丝的扭矩常数;B为恒定温度下积液产生的扭距角;f1f2是修正因子;d1d2是孔1和孔2到旋转轴的距离;a1a2是空腔的面积。

(4) 密闭空间挥发减量法:该方法是间接比较气相缓蚀剂挥发性能。由于气相缓蚀剂大多在密闭或半密闭空间使用,并保持一定的饱和蒸汽压,故该方法能很好地反映气相缓蚀剂挥发性能[34]。但该方法需要已知蒸汽压的气相缓蚀剂作为参照物,比较得出所测缓蚀剂挥发性能。张大全等[35]通过挥发减量实验间接比较了蒙脱土改性对吗啉类气相缓蚀剂挥发性能的影响,得出的结果直观明了。此外,石英晶体微天平也可用于测量气相缓蚀剂的蒸汽压,其测量更准确,可以反映极小的质量变化。

上述测试方法(1)~(3)用来测试气相缓蚀剂蒸汽压较为复杂,且需要特殊的仪器设备。而密闭空间挥发减量法因操作简便,无需特定的仪器设备,成为常用方法。Andreev和Kuznetsov[36]提出了一种可以初步评估气相缓蚀剂的蒸汽压的方法,虽然该方法的准确度不高,但是可以避免费力的测量。

4 气相缓蚀剂的缓蚀性测试

4.1 腐蚀失重法

4.1.1 分类及特点

腐蚀失重法可分为大气环境实验和实验室加速实验两种。大气环境实验最接近气相缓蚀剂的实际使用环境,实验结果真实可靠,具有说服力;但大气环境实验周期过长,跟不上现代气相缓蚀剂研制的快节奏,会出现测试与研发脱节的问题。

实验室加速实验是通过测量金属在一定温度的腐蚀介质中放置一定时间后所损失的重量进而求出金属的腐蚀速率,能反映出在加速时间内试样的腐蚀情况。腐蚀失重法虽较为原始,但它可以模拟大气腐蚀状态下气相缓蚀剂的作用过程,具有简便、易操作、测试条件稳定、无需借助特殊仪器、结果直观等优点。但其局限性是只能测得金属表面腐蚀速率平均值,无法反映金属表面的局部腐蚀或点蚀。腐蚀失重法除被广泛应用于筛选气相缓蚀剂外,还能验证其他测试方法的准确性。

4.1.2 实验装置的改进

Skinner[37]针对当时出现的结果重现性差、实验加速性差等问题进行了一系列改进。改进后的方法使用低成本的一次性组件解决了气相缓蚀剂在测试时对实验装置的污染,提高了重现性,还可以得到定量的结果。Wan等[38]研究Skinner的实验装置后发现,由于其实验装置为半开放体系,导致饱和蒸汽压较传统VCI降低了10%~20%,不适用于新型气相缓蚀剂。进一步优化后,将传统垂直挂片改为在顶部水平安放,使水蒸气均匀冷凝在试片表面,减少试片锈蚀的偶然因素;将加热方式由整体加热改为底部加热,使顶部的试片与电解质溶液处温差变大,使加热挥发的水蒸气更易冷凝在试片表面。该方法重现性和加速性更好,试样腐蚀形貌特征更明显。

目前,以腐蚀失重法为基础建立了静态缓蚀实验,目的是评价气相缓蚀剂在常温、凝露条件下的气相防锈能力;动态缓蚀实验,目的是评价气相缓蚀剂在空气流通且温度变化的实验条件下的气相防锈能力。

4.1.3 实验条件的优化

进行腐蚀失重法测试时,气相缓蚀剂的预膜时间、温度以及试片的位置等都会对测定结果产生影响。翁永基[39]以MR-POM为例,研究了缓蚀剂预挥发和预膜时间对缓蚀效率的影响。魏刚等[40]研究了预挥发和预膜对DICHAN缓蚀性能的影响,结果表明,在进行预挥发和预膜后,防锈效果随预挥发和预膜时间的延长而显著提高。刘淑坤等[41]考察温度对气相缓蚀剂缓蚀效果的影响,对不同金属材料和气相缓蚀剂体系的影响各不相同。李海清等[42]综合国内外气相缓蚀剂缓蚀性能评价方法,对实验条件进行优化,得到最佳实验条件为:实验温度60 ℃;循环周期为加热8 h静置16 h,24 h为一个循环;实验周期为1 d;溶液为含NaHCO3、Na2SO4、NaCl的质量浓度分别为1 g/L的电解质溶液60 mL。

4.1.4 腐蚀失重法为基础的相关标准

早在20世纪50年代初美国和日本就颁布了气相缓蚀剂的测试标准。我国于20世纪80年代初才参照国外先进标准制定和颁布相关部门的行业标准。目前以腐蚀失重法为基础评价气相缓蚀剂性能的标准有很多,如联邦标准FED-STD-101中的4031项、美军标准Mil-85062、日本工业标准JISZ-1519-2019、国内机械行业标准GB/T 35491-2017。上述各标准的测试流程相似,按以下步骤进行:金属试样抛光清洗、测试溶液配制、实验装置选择、温度和相对湿度调控、预膜时长选定、金属试样腐蚀等级评定[43]

国内GB/T 35491-2017介绍了如何加速消耗粉末状和液状气相缓蚀剂,挂片法和压片法两种气相缓蚀能力检测方法,再结合相容性实验和接触腐蚀性实验较全面的对气相缓蚀剂性能进行评价。但是腐蚀失重法评价气相缓蚀剂性能的测试仪器和方法,多年未有太大变化,测试周期也相对较长。

4.2 电化学分析法

金属的大气腐蚀是金属表面在薄层电解质液膜下的一种特殊形式的电化学腐蚀过程。因此,电化学测量技术和数据处理方法都可以使用。但由于液膜非常薄,传统的电化学研究方法很难对这种微量电解质体系准确地测量。因为当液膜极薄时,靠近被测金属电极表面的鲁金毛细管的参比电极会发生短路。所以,传统电化学方法需要根据薄液层体系的特点改进。对于气相缓蚀剂机理的电化学研究手段可以分为模拟大气腐蚀水全浸法和薄层电解质液法。

电化学测试法通过表征气相缓蚀剂与金属界面作用过程中产生的电化学信号,来研究缓蚀效率和缓蚀机理。电化学测试法具有快速简单、信息丰富以及原位测量等优点,现已成为研究气相缓蚀剂的主要手段。

4.2.1 模拟大气腐蚀水全浸法

气相缓蚀剂在保护金属时需要快速饱和已吸湿的金属表面,故其也有一定的溶解性。所以早期气相缓蚀剂的电化学研究方法一般采用全浸法,即将气相缓蚀剂放入模拟大气腐蚀溶液中测试。该方法操作简单、易于电化学测试,但缺点是模拟大气腐蚀水中,测试机理和气相缓蚀剂的保护机理不能很好的还原,结果并非完全合理[44, 45]

Vorobyova等[46]在模拟大气腐蚀溶液中用三电极体系对葡萄渣提取物进行电化学测试,其大气腐蚀溶液是由7.1 g/L Na2SO4的蒸馏水制备而成。张大全等[47]在模拟大气腐蚀溶液中对BPMU进行了电化学测试,其大气腐蚀溶液是由蒸馏水和0.1 kg/m3 Cl-、0.1 kg/m3 HCO3-、0.1 kg/m3 SO42-配制而成。

4.2.2 薄层电解质液测试法

金属大气腐蚀本质是吸附在金属表面的水汽形成薄层液膜引起金属电化学腐蚀,腐蚀过程会受薄层液膜特殊的供氧条件及腐蚀产物的影响[48~50]。金属大气腐蚀的介质是微量电解质溶液,传统的电化学测试设备无法精确的对这种微量电解质体系进行测量。下述几种用于气相缓蚀剂在薄层液膜下缓蚀机理的分析方法。

(1) 电阻探针

扫描Kelvins探针 (SKP) 可以用于测量导电的、半导电的或涂覆的材料与试样探针间的功函差[51]。SKP具有非接触、不干扰稳定体系、对金属表面状态变化敏感等特点[52],能有效测量气相环境中薄层液膜下金属的腐蚀电位及其分布,克服了鲁金毛细管不能很好地在薄液层中使用的问题。SKP以其非接触、无损伤等特点在研究分析气相缓蚀剂在层液膜下的缓蚀机理有着显著的优势[53]。但该技术易受环境影响,在使用时应考虑其他因素对其的影响。

(2) 气相缓蚀剂监测器

气相缓蚀剂监测器 (VCIM) 是在电化学探测电池 (ACM) 的基础上优化改进得到的一种技术。利用ACM可以进行薄液层下的电化学研究,目前ACM技术因其简单、快速和准确等优点,广泛应用于金属大气腐蚀行为研究[54]。VCIM在ACM基础上改进,由多个大小相同的软钢板组成的,每个软钢板间通过聚酯薄膜绝缘,在环氧树脂内嵌入电池装置,形成的单金属双电极的气相缓蚀剂监测装置。

Zhang等[47]采用VCIM,研究了BPMU在薄层液膜下对低碳钢的缓蚀作用,测得其电化学阻抗谱。Lavanya等[55]利用VCIM对4种不同的气相缓蚀剂进行了研究,并对其极化曲线进行了测量。

除上述两种方法外,近年科研人员对气相缓蚀剂在薄层液膜下的腐蚀分析提出多种思路。Zhang等[56]为在薄层液膜下三电极系统进行电化学测试,首先对钢样表面预膜,再将滤纸放置在钢样 (即工作电极) 上,在滤纸上滴加1 mL电解液,模拟薄层液膜,进行电化学测试。Wang等[57]为用电化学方法研究薄层液膜下气相缓蚀机理,建立了一套实验装置。该装置先将金属试样在NaCl溶液中浸泡3 min,待表面形成薄层液膜后,悬挂在含气相缓蚀剂和无气相缓蚀剂的密闭容器内,测试后进行对比。Ren等[58]为模拟气相缓蚀剂在海洋大气环境中对E36钢的缓蚀,搭建了一个电化学实验箱。该实验箱可模拟设定温度下的海洋大气,气相缓蚀剂均匀充满整个实验箱。采用三电极体系在电极上形成的薄层液膜进行开路电位、极化曲线和电化学阻抗等电化学测试。

4.2.3 极化曲线法

极化曲线法可直接获得Tafel斜率、腐蚀电流密度、腐蚀电位等参数,根据有无气相缓蚀剂的腐蚀电流密度计算可求出缓蚀率,还可以研究缓蚀剂对腐蚀电位、腐蚀速率、bAbk等动力学参数的影响,因此该方法在判断缓蚀机理和评价缓蚀剂方面广泛应用。

极化曲线法常用于测定酸性介质中缓蚀剂对金属腐蚀速率的影响。该方法的缺点是:由强极化区的极化曲线外推到自腐蚀电位下得到的腐蚀速率有较大偏差;极化到Tafel直线段所需电流较大,易引起电极表面状态、真实表面积和周围介质的显著变化;另外,测定完整的极化曲线所需时间较长。冯礼奎等[59]采用极化曲线法研究了两种碳钢用气相缓蚀剂的缓蚀行为,结果表明这两种气相缓蚀剂都为阳极型,同腐蚀失重法测得的结果一致。

4.2.4 线性极化法

线性极化法 (LPR) 对工作电极外加电流极化,测得极化电阻,配合Tafel常数计算腐蚀电流和腐蚀速率[22]。该方法对腐蚀体系的干扰小、测量时间短、重现性好,对腐蚀变化响应快,能测得瞬时腐蚀速率,可快速连续测定金属腐蚀速率。

该方法测定金属腐蚀速率的误差主要来自理论推导和实际测量误差两方面。LPR无法判别气相缓蚀剂对阴极和阳极过程的抑制程度,也不适用于导电性差的介质中。因为是在稳态条件下测量腐蚀速率,故不适用于化学腐蚀且测定的是均匀腐蚀的腐蚀速率[60]。曹葛军等[61]利用线性极化法在现场进行缓蚀剂的评选,根据所测得的最低腐蚀速率值、缓蚀剂作用时间、最低用剂浓度,从3种缓蚀剂中选出最优。

4.2.5 电化学阻抗谱技术

电化学阻抗谱技术(EIS) 是在某一小幅度直流极化条件下,研究电极过程中电化学系统的交流阻抗随频率变化关系的方法,利用宽频率范围内的响应来研究电极系统,可以得到更多的动力学信息和电极界面结构信息[62]。该方法对电极过程影响小,可以分析腐蚀过程各个步骤,有利于探讨缓蚀剂对金属腐蚀过程的影响和研究缓蚀剂作用机理。目前,借助计算机技术,可以方便地获得阻抗谱,并进行定量解释[63]

一般来说,EIS是在三电极体系下进行测试的。气相缓蚀剂研究中,确定合适的扫描速率是EIS测量的关键[64]。Ma等[65]利用EIS对有无组装膜的铝合金试样进行了防腐蚀性能评价,结果表明,酸碱复合膜的形成可以提高保护效果,复合膜的组装顺序会影响复合膜对铝合金表面的保护作用。

4.2.6 电化学噪声技术

电化学噪声技术 (EN)是一种研究腐蚀过程中电极/溶液界面电位和电流波动规律的电化学研究方法[66]。EN相对其他传统腐蚀检测技术具有以下优点[67~70]:(1) 原位无损,测量过程无需对被测电极施加可能改变腐蚀电极腐蚀过程的外界扰动;(2) 无需建立被测体系的电极过程模型;(3) 可快速提供与传统电化学技术相媲美的金属腐蚀动力学和腐蚀机理的信息。(4) 无需满足阻纳的3个基本条件;(5) 适合现场测量,可远距离检测。但是EN的缺点是噪声电阻和真实极化电阻间的偏差以及无法从噪声信号中去除直流漂移[71]

VCI分子在金属表面形成的保护薄膜通过阳极和阴极反应减缓腐蚀速率。这代表缓蚀剂正在改变电流和电位波动,因此可以研究表面膜破坏-修补过程,探测膜的动态性能等[71]。陈崇木等[72]利用EN研究了纯Mg在不同厚度薄液膜下的腐蚀行为,发现薄液膜下点蚀的孕育速率比点蚀的生长概率对纯Mg的点蚀过程影响更大。

4.2.7 电化学频率调制技术

电化学频率调制技术 (EFM) 是向腐蚀体系施加两个不同频率的正弦电位扰动,该扰动引起的交流电流响应是由不同频率的电流组成,且该电流响应可以在谐波和互调频率下测量,进而计算出腐蚀速率[73, 74]。EFM是一种无破坏性的线性在线腐蚀分析方法,该技术可不需预知Tafel常数快速测量腐蚀电流,提供的反应动力学信息比电化学阻抗谱更准确[75]。但EFM的应用受到腐蚀体系的限制,由于扰动频率不能无限降低,对于低腐蚀速率或高时间常数体系,测得的腐蚀速率偏大[76]

Swathi等[77]采用EFM测定了碳钢在HMPT抑制的酸性介质中的腐蚀速率,结果表明,随着HMPT浓度的增加,EFM测得的腐蚀速率降低。Berdimurodov等[78]采用EFM技术研究了低碳钢工作电极在不同浓度的GIM缓蚀剂条件下的腐蚀和缓蚀溶液中的电化学动力学。

4.2.8 扫描振动参比电极

扫描振动参比电极技术 (SVET) 可在探针不接触样品表面的情况下,测量局部电流、电位随远离被测电极表面位置的变化及样品在液下局部腐蚀电位[79]。SVET技术具有较好的空间分辨率,可观察材料表面发生氧化还原反应的区域,检测腐蚀处电流波动[80]。用于分析缓蚀剂于金属表面和腐蚀介质在微米甚至纳米尺度上的相互作用[81]。SVET的主要优点在于测试时间短、灵敏度高、无破坏性、可进行电化学活性测量,电化学活性谱图可以评价缓蚀剂分子在金属试样上离子电流分布的影响,进而了解金属和缓蚀剂相互作用期间的电化学过程[81, 82]。但腐蚀产物形成时,会导致SVET测量的电流变低,出现较大误差。虽然SVET可获得一些定量信息,但该技术不能取代评价缓蚀效率的传统方法,可以作为辅助手段使用[83]

Yan等[84]利用SVET技术研究了甲苯三唑对镀锌钢在NaCl溶液中的缓蚀作用,SVET图中较低的阳极和阴极电流密度表明,甲苯三唑抑制了锌的阳极和阴极反应。Schmitzhaus等[85]采用SVET等技术研究了[m-2HEA][Ol]对钢的缓蚀机理以及腐蚀介质中NaCl浓度的影响。

4.2.9 电化学石英晶体微天平

电化学石英晶体微天平 (EQCM) 不仅能检测电极表面纳克级的质量变化,还能同时测定电极表面电流、电量、阻抗和质量随电位的变化情况,是一种有效的电极表面动态分析方法[86]。EQCM设备较简单、价格相对低廉,可进行快速连续测定,灵敏度高,适合研究气相缓蚀剂的作用机理以及不同缓蚀剂的相互作用、溶液PH的影响等[87~89]。气相缓蚀膜存在的情况下,需要XPS、SEM、AFM、EIS等技术结合EQCM测量的质量变化数据分析[90]。但EQCM测试中石英晶体频率响应易受影响,会使测量具有一定误差,故对实验环境要求高,且需频繁更换石英晶振片,导致实验成本较高。

Finšgar等[91]使用EQCM研究在开路电位下,分别浸在含BTAOH和BTAH的3%NaCl溶液中镀铜电极上的质量变化,结果表明BTAH的保护性能要优于BTAOH。Gan等[92]利用EQCM研究了缓蚀剂在Fe/Na2SO4体系中的成膜动力学,推导出成膜过程中金属电极表面质量变化公式,得到缓蚀剂成膜动力学的等温线。

5 气相缓蚀剂膜形态和结构分析

腐蚀失重法和电化学方法可以有效评价气相缓蚀剂的缓蚀效率,但缺少金属表面损伤的形态信息[93]。气相缓蚀剂通常是在腐蚀电解液下的金属表面生成一层保护膜,其保护作用取决于表面膜结构和缓蚀剂对表面膜缺陷的修护能力,因此缓蚀膜的形态与结构分析是探明缓蚀机理和进一步评价缓蚀作用效果的基本研究内容。显微学法可以提供样品表面的微观形貌和腐蚀特征;光谱法和表面分析技术可以研究金属表面的缓蚀膜,表征缓蚀剂和金属表面的相互作用。

5.1 扫描电镜及能谱分析仪

扫描电子显微镜 (SEM) 通过解析电子束在样品表面扫描形成的信息,获得样品表面形貌及分布情况,但SEM只能提供定性信息[94, 95]。X射线能谱分析仪 (EDS) 主要是用来分析材料表面微区的成分,可以识别样品的元素类型和各元素浓度百分比。EDS一般作为SEM的附件结合使用,在腐蚀领域发挥不可替代的作用[96]。通过SEM及EDS可直接观察加入气相缓蚀剂前后金属表面形态的变化,观察缓蚀膜的形态以及膜与金属的结合方式,进行缓蚀膜形态分析[22]。带能谱分析的扫描电镜具有分析速度快、微区定点分析准确、可进行线和面的扫描分析等优点[97]

Belarbi等[98]利用SEM和EDS技术对碳钢表面进行了表征,结果与电化学测试和腐蚀失重法得到的数据一致,发现癸硫醇有非常好的缓蚀性能和较高的持久性。

5.2 原子力显微镜

原子力显微镜 (AFM) 是利用一个对力敏感的探针探测针尖与样品间的相互作用力实现形貌成像或性质探测的表面技术[99, 100]。AFM的优点有:可在大气、超高真空、溶液及反应性气氛等各种环境中进行;可对导体、半导体、绝缘体等多种样品成像;对样品破坏性小;可观测表面的三维立体图像[101, 102]。可以利用AFM原位测定缓蚀剂加入前后样品表面的变化来考察缓蚀剂的性能并推测缓蚀机理。

李洪阳等[103]利用AFM结合红外光谱和XPS研究了羧酸类气相缓蚀剂在45钢表面的成膜机理。结果表明,苯甲酸和C8-10酸可在45钢表面形成自组装膜,2种气相缓蚀剂都属于成膜型缓蚀剂。Vorobyova等[46]利用AFM对钢表面形貌进行分析,在钢表面成像出球形颗粒,得出结论:这些颗粒是GPE气相缓蚀剂的吸附膜且形成均匀的膜表面。

5.3 X射线光电子能谱

X射线光电子能谱技术 (XPS) 是一种用于定性和定量分析材料表面的元素组成和含量,分析元素的化学价态、化学键等信息的无损测量技术[104~107]。XPS广泛应用于分析缓蚀剂膜的组成、厚度、所含元素的相对含量等。XPS的特点包括[108]:测试范围广,可对除H和He外所有元素定性和定量分析;可对样品无损检测;可检测元素的化学位移,用于缓蚀剂中结构和化学键的研究。

Belarbi等[98]利用XPS技术研究硫醇与钢表面的吸附类型。结果表明,金属与硫之间没有形成Fe-S键,故硫醇在钢表面为物理吸附。Zhang等[109]利用XPS技术研究了BPMU和MPMU在钢表面的吸附情况。

5.4 Fourier红外光谱技术

Fourier红外光谱 (FTIR) 可以提供官能团或化学键的特征频率,可对有机和无机化合物进行定性和定量分析,也可进行官能团的鉴别。FTIR可以研究气相缓蚀剂分子与金属表面的相互作用信息,为构建缓蚀剂分子在金属表面的吸附成键模型起到重要作用[65]。FTIR的特点包括:可同时测定样品所有频率的信息、扫描速率快、可分析和鉴别各种化合物的官能团和化学键及表面的研究[110]

Lavanya等[55]利用FTIR对用不同气相缓蚀剂预膜后的金属表面进行了表征。结果表明,DCHA.BTA缓蚀剂的缓蚀效果最佳,DCHA.BTA通过氮原子中的孤对电子在Fe金属表面结合,形成较厚的络合物,进而大幅降低金属的腐蚀速率。Li等[111]利用FTIR技术对含药材提取物的NaCl溶液中浸泡24 h的AZ91合金试样进行了表面分析。结果表明,GUE、PDE和TOE的吸附行为是通过氢氧根/氧化物与合金表面的相互作用而发生的。

5.5 表面增强Raman散射光谱

表面增强Raman散射技术 (SERS) 已成为分子水平上表征金属/溶液界面电化学过程最为有效的光谱技术之一[112~114]。SERS可以从分子水平对缓蚀剂进行高分辨率的检测并分析缓蚀机理,对缓蚀剂的选择和优化有重要的意义[115]。SERS与传统拉曼光谱相比,信号强度大幅提高以及更高的探测灵敏度。还具有无破坏性、操作简便等优点。但目前SERS在缓蚀剂研究中的应用局限于银、金、铜等贵金属材料和部分黑色金属材料[116, 117]

顾仁敖等[118]利用SERS研究了咪唑在锌表面的成膜和缓蚀行为,结果表明,中性溶液中咪唑对锌的缓蚀作用最明显,是通过氮端垂直吸附在锌表面,阻止锌的腐蚀。Tormoen等[119]利用SERS实时、原位研究了气相缓蚀剂的吸附过程,评价了两种市面上的VCI产品,并研究了湿度对VCI分子吸附的影响。

6 气相缓蚀剂构效关系计算

气相缓蚀剂的构效关系是指研究化学物质与描述参数间数学关系,不仅能对气相缓蚀剂进行筛选,还可使缓蚀机理更明确,是分析气相缓蚀剂的重要手段[25]。过去气相缓蚀剂的选择标准主要是建立在实验室和现场测试的基础上,而现在量子化学计算 (QC) 和分子动力学模拟 (MD) 可以从理论上预测并计算气相缓蚀剂在特定环境中的缓蚀性能,有助于从理论上研究缓蚀性能和缓蚀机理与其分子结构、官能团电子分布及环境间的关系,在理论上指导高性能的缓蚀剂的设计、合成;也有助于从分子水平上探究缓蚀机理,发生化学变化时分子能量和几何形状的变化。

6.1 量子化学计算法

量子化学计算以量子力学为基础,包含Abinitio法、半经验分子轨道 (MNDO) 和密度泛函理论 (DFT),旨在研究原子和分子的电子结构及电子间的相关作用[120]

分子的各种量子化学参数与分子的吸附和缓蚀能力具有一定关系。通过量子化学计算,可获缓蚀剂结构参数主要有电负性、最高占据轨道能量、最低空轨道能量、化学软度、化学硬度、偶极矩、亲电指数、电子电荷转移数等[46, 121]。这些量化参数是分子内在化学性质的反映,能直接影响分子与金属表面的相互作用 (即分子的吸附能力),而分子吸附层的牢固性和完整性关系到其对金属表面的保护作用,与分子的缓蚀能力直接相关,这就是量子化学手段讨论VCI分子缓蚀能力的基础[122, 123]。通过这些参数,可以从微观角度,探讨气相缓蚀剂构效关系,揭示缓蚀剂作用机理,为设计合成新型缓蚀剂提供理论指导[124]

Sun等[125]利用量子化学计算法分析了缓蚀剂分子机构与缓蚀效率的关系。Hu和Chen[126]利用密度泛函理论计算了缓蚀剂分子的前线轨道分布,通过分子动力学模拟计算吸附在Fe-H2O表面席夫碱分子的平衡结构。

6.2 分子动力学模拟法

分子动力学模拟以牛顿第二定律为核心,模拟体系中分子和原子的运动。由各粒子在体系中受力情况,得到粒子在不同时刻的位置和速度,记录其随着时间变化的运动轨迹。之后,对上述信息进行统计力学分析,即可得到体系的压力、温度、内能、应力应变等宏观物理量,进而研究系统的动态行为、微观结构特征以及热力学性质等[127]。分子动力学模拟可以提供缓蚀剂与金属表面的吸附信息,为深入了解缓蚀剂的机理提供了方法。Ma等[65]利用分子动力学模拟法研究了缓蚀剂分子在铝表面的吸附行为。

量子化学计算和分子动力模拟都可以研究缓蚀剂分子在金属表面的吸附过程及能量变化。但是QC只适用于几百个原子的体系,研究电子转移、原子变价的化学过程;MD适用于多达数百万个原子的体系,研究动力学过程、温度变化的体系。

7 展望

未来气相缓蚀剂分析方法的研究主要集中在以下几个方面:

(1) 针对应用于各种不同环境下的气相缓蚀剂,再对腐蚀失重法的测试条件进行定向优化改进,最大程度上还原气相缓蚀剂使用时的环境。

(2) 在结合薄层液膜的基础上,发展气相缓蚀机理研究的新型测试技术,同时使更多电化学测试技术能在薄层液膜上进行。借鉴薄层液膜条件下金属腐蚀行为的测试技术,对气相缓蚀剂在金属界面的缓蚀行为进行研究,进一步探索气相缓蚀剂的电化学缓蚀机理。

(3) 丝束电极是一种集成微电极阵列,该方法得到的数据重现性较好,可以用来测量薄液膜下金属的腐蚀电位。微液滴电极是使用微观尺寸的辅助电极和参比电极组成三电极体系,用于测量金属在电解质液滴下的局部腐蚀。这两种技术可用于金属表面薄层液膜的腐蚀分析,日后或可用于气相缓蚀剂在薄层液膜的缓蚀机理分析。

(4) 扫描电化学显微镜 (SECM) 可以提供研究样品的表面几何形貌,还可分辨不均匀电极表面的电化学活性,研究微区电化学动力学过程等。据文献可知,SECM已用于液相缓蚀剂体系中,未来在气相缓蚀剂领域的腐蚀分析亦有较大的前景。

(5) 电化学原子力显微镜(ECAFM)作为最重要的电化学扫描探针显微技术之一,可用于观察表面吸附物种的形态和结构、金属电极的氧化还原过程和金属表面电化学腐蚀过程。但该技术还未应用于气相缓蚀剂,在以后的气相缓蚀剂研究中可以尝试使用。

参考文献

Yu G J, Tang B.

Electrochemical methods of inhibitor research

[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 76

[本文引用: 1]

余国骏, 汤 兵.

缓蚀剂研究中的电化学方法

[J]. 中国腐蚀与防护学报, 2009, 29: 76

[本文引用: 1]

介绍了极化曲线外推法、交流阻抗法等电化学研究方法。结果表明, 运用电化学及光电化学现代分析测试技术深入阐释缓蚀剂的缓蚀吸附行 为和机理是未来缓蚀剂领域研究中的发展趋势,对于开发围绕性能和经 济目标的新型多用途环保型缓蚀剂将具有重要的理论意义和社会价值。

Esmaily M, Svensson J E, Fajardo S, et al.

Fundamentals and advances in magnesium alloy corrosion

[J]. Prog. Mater. Sci., 2017, 89: 92

DOI      URL     [本文引用: 1]

Hou B R, Li X G, Ma X M, et al.

The cost of corrosion in China

[J]. npj Mater. Degrad., 2017, 1: 4

DOI      [本文引用: 1]

Corrosion is a ubiquitous and costly problem for a variety of industries. Understanding and reducing the cost of corrosion remain primary interests for corrosion professionals and relevant asset owners. The present study summarises the findings that arose from the landmark “Study of Corrosion Status and Control Strategies in China”, a key consulting project of the Chinese Academy of Engineering in 2015, which sought to determine the national cost of corrosion and costs associated with representative industries in China. The study estimated that the cost of corrosion in China was approximately 2127.8 billion RMB (~ 310 billion USD), representing about 3.34% of the gross domestic product. The transportation and electronics industries were the two that generated the highest costs among all those surveyed. Based on the survey results, corrosion is a major and significant issue, with several key general strategies to reduce the cost of corrosion also outlined.

Zhang D Q.

Discussion on environmental and safety factors of vapor rustproof technology and its application prospect

[J]. Corros. Prot., 2020, 41(7): 11

[本文引用: 2]

张大全.

气相防锈技术的环境安全因素探讨及其应用展望

[J]. 腐蚀与防护, 2020, 41(7): 11

[本文引用: 2]

Gangopadhyay S, Mahanwar P A.

Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review

[J]. J. Coat. Technol. Res., 2018, 15: 789

DOI      [本文引用: 2]

Cao S Y, Liu D, Ding H, et al.

Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: An experimental and theoretical study

[J]. Corros. Sci., 2019, 153: 301

DOI      URL     [本文引用: 1]

Reinhard G, Ludwig U, Hahn G.

Vapor phase corrosion inhibitors and method for their production

[P]. U.S. Pat. : 7824482, 2010

Venkatalaxmi A, Padmavathi B S, Amaranath T.

A general solution of unsteady Stokes equations

[J]. Fluid Dyn. Res., 2004, 35: 229

DOI      URL     [本文引用: 1]

Guo Y Y, Xu B, Liu Y, et al.

Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium

[J]. J. Ind. Eng. Chem., 2017, 56: 234

DOI      URL     [本文引用: 1]

Han X C, Lin D Y, Zhang J W.

Anticorrosion performance of volatile corrosion inhibitor mixture for different metals

[J]. Mater. Prot., 2019, 52(1): 40

[本文引用: 1]

韩兴存, 林德雨, 张金伟.

复配气相缓蚀剂对多种金属大气腐蚀的综合保护作用研究

[J]. 材料保护, 2019, 52(1): 40

[本文引用: 1]

Teixeira D A, Valente Jr M A G, Benedetti A V, et al.

Experimental and theoretical studies of volatile corrosion inhibitors adsorption on zinc electrode

[J]. J. Braz. Chem. Soc., 2015, 26: 434

[本文引用: 1]

Lyublinski E, Lynch P, Roytman I, et al.

Application experience and new approaches for volatile corrosion inhibitors

[J]. Int. J. Corros. Scale Inhib., 2015, 4: 176

DOI      URL     [本文引用: 1]

Bastidas D M, Cano E, Mora E M.

Volatile corrosion inhibitors: a review

[J]. Anti-Corros. Methods Mater., 2005, 52: 71

DOI      URL     [本文引用: 3]

To provide a selective bibliography for graduate students and new faculty members with sources which can help them develop their academic career.

Ansari F A, Verma C, Siddiqui Y S, et al.

Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: a review

[J]. Int. J. Corros. Scale Inhib., 2018, 7: 126

[本文引用: 1]

Ju Y L, Li Y.

Research progress of vapor phase inhibitors

[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 27

[本文引用: 1]

鞠玉琳, 李 焰.

气相缓蚀剂的研究进展

[J]. 中国腐蚀与防护学报, 2014, 34: 27

DOI      [本文引用: 1]

作为抑制金属制品大气腐蚀的重要手段之一,气相缓蚀剂近来备受关注并取得较大进展。本文介绍了气相缓蚀剂目前的国内外发展概况,阐述了气相缓蚀剂的分类、性能、评价方法和作用机理,并展望了气相缓蚀剂今后的发展方向。

Vashisht H, Bahadur I, Kumar S, et al.

Synergistic interactions between tetra butyl phosphonium hydroxide and iodide ions on the mild steel surface for corrosion inhibition in acidic medium

[J]. J. Mol. Liq., 2016, 224: 19

DOI      URL     [本文引用: 1]

Quartarone G, Bonaldo L, Tortato C.

Inhibitive action of indole-5-carboxylic acid towards corrosion of mild steel in deaerated 0.5 M sulfuric acid solutions

[J]. Appl. Surf. Sci., 2006, 252: 8251

DOI      URL     [本文引用: 1]

Khaled K F.

Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles

[J]. Electrochim. Acta, 2008, 53: 3484

DOI      URL     [本文引用: 1]

Li X H, Xu X, Lei R, et al.

Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358

[本文引用: 1]

李向红, 徐 昕, 雷然 .

磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应

[J]. 中国腐蚀与防护学报, 2022, 42: 358

DOI      [本文引用: 1]

采用失重法、电化学法及表面分析测试研究了农林废弃物核桃青皮提取物 (WGHE) 与阴离子表面活性剂十二烷基磺酸钠 (SLS) 对冷轧钢在2.0 mol/L H<sub>3</sub>PO<sub>4</sub>介质中的缓蚀协同效应,并对WGHE中的缓蚀有效成分进行了探究。结果表明:单独的WGHE、SLS具有中等程度的缓蚀性能,50 ℃时100 mg/L的缓蚀率仅为50%左右;WGHE/SLS复配后缓蚀率不断上升,最高缓蚀率可达95.3%,两者之间存在显著的缓蚀协同效应,缓蚀协同效应系数随温度的升高而增大。WGHE/SLS复配缓蚀剂更能同时有效抑制阴极和阳极反应;Nyquist图谱呈现单一弥散容抗弧,电荷转移电阻排序为:WGHE/SLS>WGHE>SLS。WGHE中主成分芦丁、槲皮素、1-甲基萘醌与SLS之间存在缓蚀协同作用,但协同性能低于WGHE/SLS复配缓蚀剂。

Chen W, Huang D X, Wei F.

Inhibition effect of brainea insignis extract against carbon steel corrosion in HCl solution

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376

[本文引用: 1]

陈 文, 黄德兴, 韦 奉.

铁蕨提取物对碳钢在盐酸中的缓蚀行为研究

[J]. 中国腐蚀与防护学报, 2021, 41: 376

[本文引用: 1]

Chen J Q, Hou D L, Xiao H, et al.

Corrosion inhibition on carbon steel in acidic solution by carbon dots prepared from waste longan shells

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 629

[本文引用: 1]

陈佳起, 侯道林, 肖 晗 .

酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究

[J]. 中国腐蚀与防护学报, 2022, 42: 629

DOI      [本文引用: 1]

为开发环境友好、高缓蚀效率的新型缓蚀剂,以桂圆壳生物质为碳源,通过煅烧法和水热法分别合成桂圆壳碳点 (longan shell-CDs,ls-CDs) 和氮掺杂桂圆壳碳点 (N-lsCDs)。在此基础上,本文通过FT-IR、XPS、TEM、电化学方法、荧光光谱分析 (FL) 和静态失重法等手段对其光学性质、结构组成和缓蚀性能进行了测定分析。结果表明:在1 mol&#x000b7;L<sup>-1</sup> HCl体系中,当ls-CDs和N-lsCDs的浓度为100和20 mg&#x000b7;L<sup>-1</sup>时,对Q235钢的缓蚀效率分别达到89.49%和92.41%。尤其是N-lsCDs,具有投加量低、原料废物利用、缓蚀性能优异的特点。极化曲线测试表明N-lsCDs为混合型抑制剂,并且N-lsCDs在碳钢表面的吸附符合Langmuir吸附等温式,同时存在物理吸附与化学吸附。利用生物质为原料制备环保新型缓蚀剂能够变废为宝,具有诱人的潜在应用前景。

Teng F, Hu G.

Research progress of vapor phase inhibitors

[J]. Corros. Sci. Prot. Technol., 2014, 26: 360

[本文引用: 3]

滕 飞, 胡 钢.

气相缓蚀剂的研究进展

[J]. 腐蚀科学与防护技术, 2014, 26: 360

[本文引用: 3]

Verma C, Olasunkanmi L O, Obot I B, et al.

2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies

[J]. RSC Adv., 2016, 6: 53933

DOI      URL     [本文引用: 1]

Verma C, Quraishi M A, Olasunkanmi L O, et al.

L-proline-promoted synthesis of 2-amino-4-arylquinoline-3-carbonitriles as sustainable corrosion inhibitors for mild steel in 1 M HCl: experimental and computational studies

[J]. RSC Adv., 2015, 5: 85417

DOI      URL     [本文引用: 1]

Wang X W, Ren J, Li Z L, et al.

Research progress of vapor phase corrosion inhibitors in marine environment

[J]. Environ. Sci. Pollut. Res. Int., 2022, 29: 88432

DOI      [本文引用: 2]

Premkumar P, Kannan K, Natesan M.

Evaluation of menthol as vapor phase corrosion inhibitor for mild steel in NaCl environment

[J]. Arabian J. Sci. Eng., 2009, 34: 71

[本文引用: 1]

Poongothai N, Rajendran P, Natesan M, et al.

Wood bark oils as vapour phase corrosion inhibitors for metals in NaCl and SO2 environments

[J]. Indian J. Chem. Technol., 2005, 12: 641

[本文引用: 1]

Finšgar M, Jackson J.

Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review

[J]. Corros. Sci., 2014, 86: 17

DOI      URL     [本文引用: 1]

Zaferani S H.

Corrosion inhibition of carbon steel in acidic solution by alizarin yellow GG (AYGG)

[J]. J. Pet. Environ. Biotechnol., 2014, 5: 1

[本文引用: 1]

Subramanian A, Natesan M, Muralidharan V S, et al.

An overview: vapor phase corrosion inhibitors

[J]. Corrosion, 2000, 56: 144

DOI      URL     [本文引用: 1]

Kuznetsov Y I.

Current state of the theory of metal corrosion inhibition

[J]. Prot. Met., 2002, 38: 103

DOI      URL     [本文引用: 2]

Rosenfeld I L, Persiantseva B P, Terentiev P B.

Mechanism of metal protection by volatile inhibitors

[J]. Corrosion, 1964, 20: 222t

[本文引用: 1]

Martin P.

Vapor pressures of volatile corrosion inhibitors by the torsion-effusion method

[J]. J. Chem. Eng. Data, 1965, 10: 292

DOI      URL     [本文引用: 1]

Zhang D Q, Gao L X, Zhou G D.

Synthesis of polyunit vapor phase inhibitor and its volatile corrosion inhibition performance

[J]. J. Electrochem., 2003, 9: 308

[本文引用: 1]

张大全, 高立新, 周国定.

多单元气相缓蚀剂的合成, 气相缓蚀能力及电化学研究

[J]. 电化学, 2003, 9: 308

[本文引用: 1]

以吗啉,甲醛和环己胺作原料,合成N,N_二 (4_吗啉甲基 )_环己胺 (BMMCH),应用红外光谱和氢核磁共振谱表征其结构,并由气相防锈甄别实验和气相防锈能力试验考察其气相防锈性能 ;采用密闭空间挥发减量实验,比较其气化挥发能力.结果表明,BMMCH对碳钢具有较好的防锈效果 ;其挥发能力较亚硝酸二环己胺弱.另通过碳钢在模拟大气腐蚀水中的极化曲线测试,发现BMMCH的存在导致碳钢电极的腐蚀电位负移,对阴极过程能起抑制作用,同时降低了阳极钝化区的电流密度.电化学阻抗谱研究表明,BMMCH对碳钢具有较好成膜稳定性

Zhang D Q, Chen X, Zhu R J, et al.

Preparation of montmorillonite-modified volatile corrosion inhibitor and its properties

[J]. Mater. Prot., 2008, 41(2): 57

[本文引用: 1]

张大全, 陈 雪, 朱瑞佳 .

蒙脱土改性气相缓蚀剂的制备及性能研究

[J]. 材料保护, 2008, 41(2): 57

[本文引用: 1]

Andreev N N, Kuznetsov Y I.

Volatile inhibitors of metal corrosion. I. vaporization

[J]. Int. J. Corros. Scale Inhib., 2012, 1: 16

DOI      URL     [本文引用: 1]

Skinner W.

A new method for quantitative evaluation of volatile corrosion inhibitors

[J]. Corros. Sci., 1993, 35: 1491

DOI      URL     [本文引用: 1]

Wan H J, Huang H J, Zhang M, et al.

A modified method for evaluation of materials containing volatile corrosion inhibitor

[J]. J. Cent. South Univ. Technol., 2005, 12: 406

DOI      URL     [本文引用: 1]

Weng Y J.

Vapour phase corrosion inhibitors for preservation of metallic equipments and installations on offshore platforms

[J]. Oilfield Chem., 2001, 18: 367

[本文引用: 1]

翁永基.

埕岛海洋平台设备防大气腐蚀缓蚀剂的应用研究

[J]. 油田化学, 2001, 18: 367

[本文引用: 1]

Wei G, Yang M, Xiong R C.

Usability of dicyclohexylamine nitrite for preservation of equipment

[J]. Corros. Sci. Prot. Technol., 2000, 12: 269

[本文引用: 1]

魏 刚, 杨 民, 熊蓉春.

气相缓蚀剂用于钢制设备保护的研究

[J]. 腐蚀科学与防护技术, 2000, 12: 269

[本文引用: 1]

Liu S K, Peng Q, Wang H C.

Temperature effect on inhibition efficiency of vapor phase inhibitor

[J]. Mater. Prot., 2002, 35(8): 12

[本文引用: 1]

刘淑坤, 彭 乔, 王海潮.

温度对气相缓蚀剂缓蚀效果的影响

[J]. 材料保护, 2002, 35(8): 12

[本文引用: 1]

Li H Q, Qian J, Wang T.

A confined space quantitative evaluation method of vapor phase corrosion inhibitors

[J]. Packag. Eng., 2012, 33(19): 94

[本文引用: 1]

李海清, 钱 静, 王 彤.

一种气相缓蚀剂的密闭空间定量评价方法

[J]. 包装工程, 2012, 33(19): 94

[本文引用: 1]

Valdez B, Schorr M, Cheng N, et al.

Technological applications of volatile corrosion inhibitors

[J]. Corros. Rev., 2018, 36: 227

DOI      URL     [本文引用: 1]

The objective of this review is to create a body of knowledge on the theoretical and practical aspects of corrosion inhibition to prevent and/or to eliminate corrosion in natural environments such as water, air, and acids and in industrial facilities such as oil, natural gas, concrete, paints and coatings, electronics, and military equipment. Corrosion inhibitors (CIs) and volatile corrosion inhibitors (VCIs) are applied in diverse forms such as powders, pellets, aqueous, or solvent solutions and in impregnated papers; closed in pouches and sachets; and added to coatings. Natural CIs are extracted by water or organic solvents from suitable plants. They represent the advanced trends of corrosion management based on green chemistry.

Zeng R C, Zhang J, Huang W J, et al.

Review of studies on corrosion of magnesium alloys

[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s763

DOI      URL     [本文引用: 1]

Zhao M C, Schmutz P, Brunner S, et al.

An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing

[J]. Corros. Sci., 2009, 51: 1277

DOI      URL     [本文引用: 1]

Vorobyova V, Chygyrynets O, Skiba M, et al.

A comprehensive study of grape pomace extract and its active components as effective vapour phase corrosion inhibitor of mild steel

[J]. Int. J. Corros. Scale Inhib., 2018, 7: 185

[本文引用: 3]

Zhang D Q, Gao L X, Zhou G D.

Polyamine compound as a volatile corrosion inhibitor for atmospheric corrosion of mild steel

[J]. Mater. Corros., 2007, 58: 594

[本文引用: 2]

Deng J H, Hu J Z, Deng P C, et al.

Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331

[本文引用: 1]

邓俊豪, 胡杰珍, 邓培昌 .

氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响

[J]. 中国腐蚀与防护学报, 2019, 39: 331

DOI      [本文引用: 1]

在湛江高湿热、高盐度、强辐照的热带海洋大气环境下,分别对有氧化皮与无氧化皮的SPHC热轧钢板进行了15,30,90和180 d暴晒实验,研究了氧化皮对SPHC热轧钢板的初期腐蚀行为的影响。采用X射线衍射仪分析了氧化皮与锈层的组成成分,采用扫描电镜观察了腐蚀产物表面和截面的微观形貌,采用X射线能谱仪分析了锈层的元素分布,同时对暴晒后的试样进行极化曲线测试。结果表明,氧化皮的主要组成成分为Fe<sub>3</sub>O<sub>4</sub>,可以明显减缓钢的早期腐蚀速率。随着腐蚀的进行,氧化皮逐渐转化为锈层,腐蚀产物不断生成,有氧化皮试样与无氧化皮试样的腐蚀行为逐渐趋于一致,腐蚀速率差别较小。氧化皮通过屏蔽作用减缓了钢的早期腐蚀速率,并没有改变腐蚀产物的成分。

Liu Y J, Wang Z Y, Wang B B, et al.

Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies

[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261

刘艳洁, 王振尧, 王彬彬 .

实时监测技术研究薄液膜下电偶腐蚀的机理

[J]. 中国腐蚀与防护学报, 2017, 37: 261

DOI     

采用大气腐蚀检测技术 (ACM)、零电阻电流技术 (ZRA) 以及电化学阻抗谱技术 (EIS) 对2024铝合金与316L不锈钢在薄液膜下的电偶腐蚀行为进行了实时监测。结果表明,电偶腐蚀的过程可分为诱导期、加速期和减速期3个阶段。随着两电极之间距离的减小,电偶腐蚀会快速诱发,且腐蚀速率迅速增加,但电偶腐蚀的加速期变短。

Yu Y, Lu L, Li X G.

Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer

[J]. Chin. J. Eng., 2018, 40: 649

[本文引用: 1]

于 阳, 卢 琳, 李晓刚.

微区电化学技术在薄液膜大气腐蚀中的应用

[J]. 工程科学学报, 2018, 40: 649

[本文引用: 1]

Wang L W, Du C W, Liu Z Y, et al.

Electrochemical principle analysis of scanning kelvin probe

[J]. Corros. Sci. Prot. Technol., 2013, 25: 327

[本文引用: 1]

王力伟, 杜翠薇, 刘智勇 .

扫描Kelvin探针的电化学原理分析

[J]. 腐蚀科学与防护技术, 2013, 25: 327

[本文引用: 1]

Teng L, Chen X.

Research progress of galvanic corrosion in marine environment

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531

[本文引用: 1]

滕 琳, 陈 旭.

海洋环境中金属电偶腐蚀研究进展

[J]. 中国腐蚀与防护学报, 2022, 42: 531

[本文引用: 1]

Wang Y H, Zhang T, Wang J, et al.

Applications of kelvin probe technique in the studies of atmospheric corrosion

[J]. J. Chin. Soc. Corros. Prot., 2004, 24: 59

[本文引用: 1]

王燕华, 张 涛, 王 佳 .

Kelvin探头参比电极技术在大气腐蚀研究中的应用

[J]. 中国腐蚀与防护学报, 2004, 24: 59

[本文引用: 1]

Kelvin探头参比电极技术是近年来大气腐蚀领域中最为活跃的研究方向之一。它能够不接触、无破坏的检测薄液膜甚至涂层下金属表面的腐蚀电位分布。文中介绍了该技术的发展历史、技术要点,着重讨论了该技术在研究金属表面有机涂层的剥离和薄液层下金属的腐蚀两方面的应用。

Wang J, Chen J J, Xie Y, et al.

Evaluation of environmental factors related with atmosphere corrosivity in hunan provice by atmospheric corrosion monitoring technique

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487

[本文引用: 1]

王 军, 陈军君, 谢 亿 .

湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定

[J]. 中国腐蚀与防护学报, 2021, 41: 487

[本文引用: 1]

Lavanya K, Kannan P, Palanisamy K, et al.

Comparison study of volatile corrosion inhibitors in steam And Cl2 gas environment on mild steel

[J]. Arabian J. Sci. Eng., 2014, 39: 5381

DOI      URL     [本文引用: 2]

Zhang X, Ma Y T, Li Y, et al.

Technical note: cyclohexylamine carbonate as vapor phase inhibitor for Nd-Fe-B magnet

[J]. Corrosion, 2013, 69: 647

DOI      URL     [本文引用: 1]

Wang D, Wang C X, Fang C Q, et al.

Protective behavior of volatile corrosion inhibitor on atmospheric corrosion process of carbon steel under thin electrolyte liquid film of chloride solutions

[J]. Mater. Express, 2020, 10: 1435

DOI      URL     [本文引用: 1]

The corrosion process of carbon steel and corrosion resistance behavior of volatile corrosion inhibitor (VCI) under thin electrolyte liquid film containing chloride was investigated by electrochemical measurements and surface characterization. Results indicated that composite VCI was\n composed of sodium molybdate and sodium benzoate, and exhibited higher corrosion resistance in 3.5% NaCl solution compared with absence of VCI. The corrosion current density obviously decreased with presence of VCI, and the synergies between binary components increased the corrosion inhibiting\n rate on carbon steel to up to 90%. The corrosion current density of carbon steel increased with increased temperature after volatilization of VCI. A closed container was carried out to mimic atmospheric corrosion condition, and its vapor corrosion inhibition property was evaluated in this\n closed container. Results showed that the VCI acted as an inhibitor by suppressing anodic dissolution and metallic ion transfer through the formation of protective film. It was also observed that the variation of carbon steel surface with volatilization of VCI was assessed by atomic force\n microscope (AFM) and scanning electron microscope (SEM). The anodic process for carbon steel without VCI affected the corrosion rate due to accumulation of corrosion products, while the morphology of carbon steel was hardly changed with volatilization of VCI. The results showed that the VCI\n volatilized to the surface and form to protect film. VCI was automatically volatilized into gas, which protected steel from corrosion. This composite VCI can then be applied as a significant corrosion inhibition method.

Ren J, Xu W C, Yang L H, et al.

Study on vapor phase corrosion inhibitor for E36 ship steel in marine atmospheric environment

[J]. Anti-Corros. Methods Mater., 2022, 69: 362

DOI      URL     [本文引用: 1]

This study aims to investigate the effect of vapor phase corrosion inhibitor (VCI) imidazoline, quinoline and urea on E36 ship steel in simulated marine atmospheric environment.

Feng L K, Yu Z Y, Qian Z H, et al.

Corrosion inhibition behavior of salt-type vapor phase corrosion inhibitor for carbon steel

[J]. Corros. Prot., 2019, 40: 28

[本文引用: 1]

冯礼奎, 于志勇, 钱洲亥 .

碳钢用盐型气相缓蚀剂的缓蚀行为

[J]. 腐蚀与防护, 2019, 40: 28

[本文引用: 1]

Zhou Y B, Shao L Y, Li Y T, et al.

Current status and trend of corrosion monitoring techniques

[J]. Mar. Sci., 2005, 29(7): 77

[本文引用: 1]

周玉波, 邵丽艳, 李言涛 .

腐蚀监测技术现状及发展趋势

[J]. 海洋科学, 2005, 29(7): 77

[本文引用: 1]

Cao G J, Yan H Y, Li X C.

Screening the corrosion inhibitor by linear polarization resistance technology

[J]. Total Corros. Control, 2011, 25(5): 17

[本文引用: 1]

曹葛军, 闫化云, 李新超.

应用线性极化电阻法现场筛选缓蚀剂

[J]. 全面腐蚀控制, 2011, 25(5): 17

[本文引用: 1]

Zheng L Q, Yang Y K, Wu Y H, et al.

A method to measure corrosion rate by combination of ac impedance and weak polarization

[J]. Corros. Sci. Prot. Technol., 2006, 18: 457

[本文引用: 1]

郑立群, 杨永宽, 吴勇华 .

一种交流阻抗和弱极化相结合的腐蚀速度测量方法

[J]. 腐蚀科学与防护技术, 2006, 18: 457

[本文引用: 1]

Macdonald D D.

Review of mechanistic analysis by electrochemical impedance spectroscopy

[J]. Electrochim. Acta, 1990, 35: 1509

DOI      URL     [本文引用: 1]

Ma I A W, Ammar S, Kumar S S A, et al.

A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies

[J]. J. Coat. Technol. Res., 2022, 19: 241

DOI      [本文引用: 1]

Ma T F, Zhang H L, Gao L X, et al.

Surface modification for Al alloy by volatile corrosion inhibitors from cyclohexylamine, octanoic acid, and their reaction product

[J]. Mater. Corros., 2021, 72: 1468

[本文引用: 3]

Bertocci U, Huet F.

Noise-analysis applied to electrochemical systems

[J]. Corrosion, 1995, 51: 131

DOI      URL     [本文引用: 1]

Chen J F, Bogaerts W F.

Electrochemical emission spectroscopy for monitoring uniform and localized corrosion

[J]. Corrosion, 1996, 52: 753

DOI      URL     [本文引用: 1]

Legat A, Doleček V.

Corrosion monitoring system based on measurement and analysis of electrochemical noise

[J]. Corrosion, 1995, 51: 295

DOI      URL    

Puget Y, Trethewey K, Wood R J K.

Electrochemical noise analysis of polyurethane-coated steel subjected to erosion-corrosion

[J]. Wear, 1999, 233-235: 552

DOI      URL    

Zhang J Q, Zhang Z, Wang J M, et al.

Analysis and application of electrochemical noose I. Theory of electrochemical noise analysis

[J]. J. Chin. Soc. Corros. Prot., 2001, 21: 55

[本文引用: 1]

张鉴清, 张 昭, 王建明 .

电化学噪声的分析与应用——Ⅰ.电化学噪声的分析原理

[J]. 中国腐蚀与防护学报, 2001, 21: 55

[本文引用: 1]

Obot I B, Onyeachu I B, Zeino A, et al.

Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research

[J]. J. Adhes. Sci. Technol., 2019, 33: 1453

DOI      [本文引用: 2]

The ability to analyze different electrochemical corrosion phenomena, in-situ, without requiring any form of electrode perturbation has strongly attracted the attention of corrosion researchers towards the application of electrochemical noise (EN) analysis method. With the ability to analyze stochastic and chaotic electrode potential and current fluctuations at E-OCP, the EN analysis method is capable of providing information about the kinetics and mechanism of metallic corrosion with accuracy that can match conventional electrochemical techniques. Herein, we review the recent applications of EN analysis method to electrochemical corrosion research. We discuss briefly the theory behind the measurement of EN, and then highlight some of its application in the evaluation of corrosion inhibitors, pitting corrosion, coatings on metals, microbiologically-induced corrosion, as well as CO2-corrosion. The drawbacks of the EN analysis method have also been highlighted and future considerations on the use of this important electrochemical technique have also been proposed.

Chen C M, Zhang T, Shao Y W, et al.

Corrosion of pure magnesium under thin electrolyte films Ⅱ-influence of thin electrolyte films on anodic process of pure magnesium corrosion

[J]. Corros. Sci. Prot. Technol., 2009, 21: 97

[本文引用: 1]

陈崇木, 张 涛, 邵亚薇 .

利用电化学方法研究纯镁在薄液膜下的腐蚀行为Ⅱ-薄液膜对纯镁腐蚀阳极过程的影响

[J]. 腐蚀科学与防护技术, 2009, 21: 97

[本文引用: 1]

Rauf A, Bogaerts W F.

Monitoring of crevice corrosion with the electrochemical frequency modulation technique

[J]. Electrochim. Acta, 2009, 54: 7357

DOI      URL     [本文引用: 1]

Fouda A S, El-Maksoud S A A, El-Habab A T, et al.

Synthesis and characterization of novel fatty alcohol ethoxylate surfactants for corrosion inhibition of mild steel

[J]. J. Bio. Tribo. Corros., 2021, 7: 18

DOI      [本文引用: 1]

Obot I B, Onyeachu I B, Kumar A M.

Sodium alginate: a promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium

[J]. Carbohydr. Polym., 2017, 178: 200

DOI      URL     [本文引用: 1]

Tao L, Zheng S Z, Qin L J, et al.

Application of electrochemical measurement technology in the inhibition behavior research of corrosion inhibitors

[J]. Ind. Water Treat., 2010, 30(8): 1

[本文引用: 1]

陶 蕾, 郑书忠, 秦立娟 .

电化学测试技术在缓蚀剂缓蚀行为研究中的应用

[J]. 工业水处理, 2010, 30(8): 1

[本文引用: 1]

Swathi N P, Samshuddin S, Aljohani T A, et al.

A new 1,2,4-triazole derivative as an excellent corrosion inhibitor: electrochemical experiments with theoretical validation

[J]. Mater. Chem. Phys., 2022, 291: 126677

DOI      URL     [本文引用: 1]

Berdimurodov E, Kholikov A, Akbarov K, et al.

Novel gossypol–indole modification as a green corrosion inhibitor for low–carbon steel in aggressive alkaline–saline solution

[J]. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 637: 128207

DOI      URL     [本文引用: 1]

Wang L, Kong X D, Su X H, et al.

Application of micro-area electrochemical method in the field of galvanic corrosion

[J]. Mater. Prot., 2020, 53(1): 157

[本文引用: 1]

王 雷, 孔小东, 苏小红 .

微区电化学方法在电偶腐蚀领域的应用

[J]. 材料保护, 2020, 53(1): 157

[本文引用: 1]

Xu D, Yang X J, Li Q, et al.

Review on corrosion test methods and evaluation techniques for materials in atmospheric environment

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447

[本文引用: 1]

徐迪, 杨小佳, 李 清 .

材料大气环境腐蚀实验方法与评价技术进展

[J]. 中国腐蚀与防护学报, 2022, 42: 447

DOI      [本文引用: 1]

从大气腐蚀加速试验方法、大气腐蚀电化学方法及大气腐蚀监检测技术对大气腐蚀试验方法进行了综述。大气腐蚀加速试验中,多因子循环复合腐蚀试验已经成为模拟大气腐蚀加速试验的主要发展方向;同时,随着电化学方法空间分辨率的提升,大气腐蚀电化学方法也从宏观电化学技术向微区电化学技术延伸;另外,随着物联网及计算机技术的发展,基于数据挖掘及机器学习等现代化的数据处理技术也在大气腐蚀监检测技术中得到了应用。

Ramírez-Cano J A, Veleva L, Fernández-Pérez B M, et al.

SVET study of the interaction of 2-mercaptobenzothiazole corrosion inhibitor with Au, Cu and Au-Cu galvanic pair

[J]. Int. J. Corros. Scale Inhib., 2017, 6: 307

[本文引用: 2]

Fateh A, Aliofkhazraei M, Rezvanian A R.

Review of corrosive environments for copper and its corrosion inhibitors

[J]. Arabian J. Chem., 2020, 13: 481

DOI      URL     [本文引用: 1]

Bastos A C, Zheludkevich M L, Ferreira M G S.

Concerning the efficiency of corrosion inhibitors as given by SVET

[J]. Port. Electrochim. Acta, 2007, 26: 47

DOI      URL     [本文引用: 1]

Yan Y H, Shi H W, Wang J, et al.

Corrosion inhibition of galvanized steel in NaCl solution by tolytriazole

[J]. Acta Metall. Sin., 2019, 32: 471

DOI      [本文引用: 1]

Schmitzhaus T E, Vega M R O, Schroeder R, et al.

Localized corrosion behavior studies by SVET of 1010 steel in different concentrations of sodium chloride containing [m-2HEA][Ol] ionic liquid as corrosion inhibitor

[J]. Electrochim. Acta, 2022, 419: 104385

[本文引用: 1]

Wei X Y, Wang G, Li A F, et al.

Application of electrochemical quartz crystal microbalance

[J]. Prog. Chem., 2018, 30: 1701

DOI      [本文引用: 1]

Electrochemical Quartz Crystal Microbalance (EQCM) is a testing technique that combines quartz crystal microbalance (QCM) and electrochemical detection. EQCM is one of effective methods to study the surface reaction due to its simplicity, rapidness, and the ability to dynamically detect the deposition, adsorption, or dissolution of an active material on a quartz crystal at nanogram level. At the same time, because the EQCM testing technology is an in-situ testing method, online real-time monitoring can be realized. With its high precision and high sensitivity, it is possible to further analyze the reaction process and deep-level mechanism at the surface interface. This paper summarizes the application of EQCM in the fields of electrochemical, biomedical and oil field chemistry, as well as research mechanism and dynamics, and puts forward the new research direction of EQCM and the problems in its development.<br>Contents<br>1 Introduction<br>2 Application of EQCM in electrochemistry<br>2.1 Application of EQCM in electro-synthesis<br>2.2 Application of EQCM in electrode-position and dissolution<br>2.3 Application of EQCM in adsorption and desorption<br>2.4 Application of EQCM in polymer modified electrode<br>2.5 Membrane ionic, charge conduction movement and determination<br>2.6 EQCM in energy conversion and storage applications<br>3 Application of EQCM in biomedical and oilfield chemistry<br>4 Application of EQCM in other areas<br>4.1 Gas detection<br>4.2 Structural characterization<br>5 Application of EQCM in study of the reaction process of kinetics and mechanism<br>5.1 Study of reaction mechanism by EQCM<br>5.2 Study on thermodynamics and kinetics of reaction process by EQCM<br>6 Conclusion

魏晓妍, 王 刚, 李岸峰 .

电化学石英晶体微天平的应用

[J]. 化学进展, 2018, 30: 1701

DOI      [本文引用: 1]

电化学石英晶体微天平(EQCM)即石英晶体微天平(QCM)与电化学检测相结合的测试技术。电化学石英晶体微天平以其简单、快速,可以在纳克级水平上对活性物质在石英晶振片上发生的沉积、吸附或溶解等过程进行动态检测等优势而成为表界面反应研究的有效手段之一。由于EQCM测试技术为原位测试方法,可以实现在线实时监测,利用其高精度和高灵敏度可以进一步对表界面上发生反应的过程及深层次的机理进行分析。本文就EQCM在电化学、生物医学及油田化学等领域以及研究机理及动力学等方面的应用进行了总结阐述,提出了EQCM的研究新方向以及发展中面临的问题。

Johannsen K, Page D, Roy S.

A systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM

[J]. Electrochim. Acta, 2000, 45: 3691

DOI      URL     [本文引用: 1]

Klunker J, Schäfer W.

Anodic behavior of copper in acetonitrile: the influence of carbon dioxide and dimethylamine

[J]. J. Electroanal. Chem., 1999, 466: 107

DOI      URL    

Qiu Y Y, Wang D H, Gan F X.

Review on the application of quartz crystal microbalance in the research of metal corrosion

[J]. Corros. Sci. Prot. Technol., 2002, 14: 38

[本文引用: 1]

仇银燕, 汪的华, 甘复兴.

石英晶体微天平在金属腐蚀研究中的应用

[J]. 腐蚀科学与防护技术, 2002, 14: 38

[本文引用: 1]

Petrunin M A, Gladkikh N A, Maleeva M A, et al.

Application of the quartz crystal microbalance technique in corrosion studies. A review

[J]. Int. J. Corros. Scale Inhib., 2020, 9: 92

[本文引用: 1]

Finšgar M, Lesar A, Kokalj A, et al.

A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution

[J]. Electrochim. Acta, 2008, 53: 8287

DOI      URL     [本文引用: 1]

Gan F X, Dai ZX, Wang D H, et al.

A study on the filming kinetics of corrosion inhibitors in Fe/Na2SO4 system using EQCM

[J]. Corros. Sci., 2000, 42: 1379

DOI      URL     [本文引用: 1]

Sharma S, Ganjoo R, Thakur A, et al.

Electrochemical characterization and surface morphology techniques for corrosion inhibition—a review

[J]. Chem. Eng. Commun., 2023, 210: 412

DOI      URL     [本文引用: 1]

Singh A, Soni N, Yu D Y, et al.

A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment

[J]. Results Phys., 2019, 13: 102116

DOI      URL     [本文引用: 1]

Zhai Q X, Huang H J, Liu D, et al.

Analysis the theory and application of SEM and EDS analytical method

[J]. Printed Circuit Inf., 2012, (5): 66

[本文引用: 1]

翟青霞, 黄海蛟, 刘东 .

解析SEM&EDS分析原理及应用

[J]. 印制电路信息, 2012, (5): 66

[本文引用: 1]

Wu L X, Chen F Y.

Development of modern SEM and its application in material science

[J]. Wisco Technol., 2005, 43(6): 36

[本文引用: 1]

吴立新, 陈方玉.

现代扫描电镜的发展及其在材料科学中的应用

[J]. 武钢技术, 2005, 43(6): 36

[本文引用: 1]

Wang Y Z, Hou X Q.

Application of SEM with EDX in material analysis

[J]. Manuf. Technol. Mach. Tool, 2007, (9): 80

[本文引用: 1]

王英姿, 侯宪钦.

带能谱分析的扫描电子显微镜在材料分析中的应用

[J]. 制造技术与机床, 2007, (9): 80

[本文引用: 1]

Belarbi Z, Vu T N, Farelas F, et al.

Thiols as volatile corrosion inhibitors for top-of-the-line corrosion

[J]. Corrosion, 2017, 73: 892

DOI      URL     [本文引用: 2]

Meyer E.

Atomic force microscopy

[J]. Prog. Surf. Sci., 1992, 41: 3

DOI      URL     [本文引用: 1]

Torre B, Ricci D, Braga P C.

How the atomic force microscope works?

[A]. BragaPC, RicciD. Atomic Force Microscopy in Biomedical Research [M]. Totowa: Humana, 2011: 3

[本文引用: 1]

Lin X F, Zhang H J, Zhang D X, et al.

AFM in liquid and on-spot study of metal corrosion

[J]. J. Optoelectron. Laser, 2006, 17: 638

[本文引用: 1]

林晓峰, 章海军, 张冬仙 .

液相型AFM的研制与金属腐蚀原位研究

[J]. 光电子·激光, 2006, 17: 638

[本文引用: 1]

Wang X Q, Liu J L.

A review of the application of atomic force microscopy in wood science research

[J]. World For. Res., 2006, 19(1): 38

[本文引用: 1]

王小青, 刘君良.

原子力显微镜在木材科学研究中的应用

[J]. 世界林业研究, 2006, 19(1): 38

[本文引用: 1]

Li H Y, Lu L X, Li W Z, et al.

Film formation mechanism of carboxylic acid-based volatile corrosion inhibitors on 45 steel surface

[J]. Electroplat. Finish., 2020, 39: 1004

[本文引用: 1]

李洪阳, 卢立新, 李伟哲 .

45钢表面羧酸类气相缓蚀剂的成膜机理

[J]. 电镀与涂饰, 2020, 39: 1004

[本文引用: 1]

Yu J T, Guo Z C, Feng T, et al.

Application of X-ray photoelectron spectroscopy in material surface research

[J]. Surf. Technol., 2014, 43(1): 119

[本文引用: 1]

余锦涛, 郭占成, 冯 婷 .

X射线光电子能谱在材料表面研究中的应用

[J]. 表面技术, 2014, 43(1): 119

[本文引用: 1]

Zhang S W, Zhang B P, Li S, et al.

Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: role of charge transfer

[J]. J. Adv. Ceram., 2017, 6: 1

DOI     

Zhang S W, Li S, Zhang B P, et al.

Copper-nanoparticle-dispersed amorphous BaTiO3 thin films as hole-trapping centers: enhanced photocatalytic activity and stability

[J]. RSC Adv., 2019, 9: 5045

DOI      URL    

Zhang S W, Zhang B P, Li S, et al.

SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films

[J]. J. Alloy. Compd., 2016, 654: 112

DOI      URL     [本文引用: 1]

Zhang S W, Yao Y X, Gao H F, et al.

Application of X-ray photoelectron spectroscopy in material surface analysis

[J]. Metrol. Sci. Technol., 2021, (1): 40

[本文引用: 1]

张素伟, 姚雅萱, 高慧芳 .

X射线光电子能谱技术在材料表面分析中的应用

[J]. 计量科学与技术, 2021, (1): 40

[本文引用: 1]

Zhang D Q, An Z X, Pan Q Y, et al.

Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel

[J]. Corros. Sci., 2006, 48: 1437

DOI      URL     [本文引用: 1]

Focke W W, Nhlapo N S, Vuorinen E.

Thermal analysis and FTIR studies of volatile corrosion inhibitor model systems

[J]. Corros. Sci., 2013, 77: 88

DOI      URL     [本文引用: 1]

Li H N, Fan M, Wang K, et al.

Traditional Chinese medicine extracts as novel corrosion inhibitors for AZ91 magnesium alloy in saline environment

[J]. Sci. Rep., 2022, 12: 7367

DOI      PMID      [本文引用: 1]

Zingiber officinale Roscoe extract, Raphanus sativus L. extract, Rheum palmatum extract, Coptis chinensis extract, Glycyrrhiza uralensis extract (GUE), Potentilla discolor extract (PDE) and Taraxacum officinale extract (TOE) were screened for the green corrosion inhibitors of AZ91 alloy in saline environment. The experiment results demonstrated that GUE, PDE and TOE can significantly enhance the corrosion resistance of AZ91 alloy by 73.4, 87.6 and 84.6%, respectively. Surface characterization using FTIR, UV-Vis and XPS revealed that the organic compounds of GUE, PDE and TOE can interact with the alloy surface to form a protective physisorbed film, effectively mitigating the corrosion process of AZ91 alloy. The present results may be helpful to discover the new green inhibitors with high inhibition efficiency for AZ91 alloy.© 2022. The Author(s).

Cialla D, März A, Böhme R, et al.

Surface-enhanced Raman spectroscopy (SERS): progress and trends

[J]. Anal. Bioanal. Chem., 2012, 403: 27

DOI      PMID      [本文引用: 1]

Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.

Mun J, Lee D, So S, et al.

Surface-enhanced spectroscopy: toward practical analysis probe

[J]. Appl. Spectrosc. Rev., 2019, 54: 142

DOI     

Surface-enhanced spectroscopy (SES) is a consequence of extreme electromagnetic fields and chemical interactions near a surface. SES is highly sensitive and selective and has been exploited in chemistry, physics, biology, and medicine. It is a rapidly developing technique and is expected to become an important analysis tool. This review introduces theories and concepts of SES techniques including surface-enhanced (SE) Raman scattering, SE infrared absorption, SE chiroptical spectroscopy, and SE fluorescence. Then recent research and applications are discussed to indicate current challenges and future directions.

Yan C W, Yu J K, Lin H C, et al.

Application of laser raman spectroscopy to the research of metal corrosion

[J]. Corros. Sci. Prot. Technol., 1998, 10: 163

[本文引用: 1]

严川伟, 余家康, 林海潮 .

激光拉曼光谱在金属腐蚀研究中的应用

[J]. 腐蚀科学与防护技术, 1998, 10: 163

[本文引用: 1]

Mrozek M F, Wasileski S A, Weaver M J.

Periodic trends in electrode-chemisorbate bonding: benzonitrile on platinum-group and other noble metals as probed by surface-enhanced Raman spectroscopy combined with density functional theory

[J]. J. Am. Chem. Soc., 2001, 123: 12817

PMID      [本文引用: 1]

Detailed intramolecular vibrational spectra obtained by means of surface-enhanced Raman scattering (SERS) for benzonitrile adsorbed on seven electrode surfaces-four Pt-group metals (platinum, palladium, rhodium, and iridium) and the Group IB metals (copper, silver, and gold)-are reported with the aim of exploring the metal-dependent nature of surface-chemisorbate interactions. The Pt-group surfaces were prepared as ultrathin electrodeposited films on gold, enabling the SERS activity inherent to the substrate to be imparted to the overlayer material. Benzonitrile was selected as a "model" organic adsorbate since it displays a rich array of coupled aromatic ring as well as substituent modes which collectively can provide insight into the various molecular perturbations induced by surface coordination via the nitrile substituent. The experimental spectra are compared with ab initio calculations of vibrational frequencies, bond geometries, and charge distributions obtained by means of Density Functional Theory (DFT), which yields valuable insight into the underlying structural reasons for the sensitivity of the experimental coordination-induced frequency shifts to the nature of the intramolecular mode and the metal surface. The DFT results also form an invaluable aid in making SER spectral assignments, along with providing detailed information on the coupled atomic displacements involved in each vibrational mode. Benzonitrile surface coordination was modeled in the DFT calculations by binding the nitrile group to metal atoms and small metal clusters. While the majority of the aromatic-ring SER frequencies are altered only slightly (approximately < 5 cm(-1)) upon surface coordination, several modes (especially nu(1), nu(6a)) are blue-shifted substantially (by up to 50 cm(-1)). These shifts were identified by DFT as arising from mode coupling to the nitrile substituent, especially involving the C-CN bond that is compressed upon nitrile coordination, associated with metal-adsorbate back-donation. The small (<5 cm(-1)) red-shifts seen for ring vibrations not involving coupled substituent motion apparently arise from increased antibonding aromatic electron density. The metal-dependent frequency shifts seen for these coupled aromatic vibrations as well as for the more localized C-N nitrile stretching mode are consistent with increased back-donation anticipated in the sequence d(10) < d(9) < d(8) within a given Periodic row. Overall, the findings provide a benchmark illustration of the virtues of DFT in interpreting complex vibrational spectra for larger polyatomic adsorbates.

Wang J K, Ma L W, Ding X L, et al.

Surface-enhanced Raman scattering (SERS) spectroscopy of corrosion inhibitors: high-resolution detection, adsorption property, and inhibition mechanism

[J]. Appl. Spectrosc. Rev., 2022, doi: 10.1080/05704928.2022.2129667

[本文引用: 1]

Zhang X, Tan Q H, Wu J B, et al.

Review on the Raman spectroscopy of different types of layered materials

[J]. Nanoscale, 2016, 8: 6435

DOI      PMID      [本文引用: 1]

Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations. Finally, we review the recent advances on Raman spectroscopy in the characterization of anisotropic LMs, such as black phosphorus and rhenium diselenide. We believe that this review will benefit the future research studies on the fundamental physics and potential applications of these various LMs, particularly when they are reduced down to monolayers or multilayers.

Gu R A, Bao F, Shen X Y, et al.

Surface-enhanced Raman spectroscopic studies on the inhibition mechanisms for imidazole on zinc surfaces

[J]. Chem. J. Chin. Univ., 2007, 28: 948

[本文引用: 1]

顾仁敖, 鲍 芳, 沈晓英 .

咪唑对锌缓蚀机理的表面增强拉曼光谱研究

[J]. 高等学校化学学报, 2007, 28: 948

[本文引用: 1]

Tormoen G, Burket J, Dante J F, et al.

Monitoring the adsorption of volatile corrosion inhibitors in real time with surface-enhanced Raman spectroscopy

[J]. Corrosion, 2006, 62: 1082

DOI      URL     [本文引用: 1]

Liu L, Su H Y, Li X, et al.

Study on the preparation and corrosion inhibition of Schiff-base self-assembled membranes

[J]. Anti-Corros. Methods Mater., 2019, 66: 168

DOI      URL     [本文引用: 1]

This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution.

Peme T, Olasunkanmi L O, Bahadur I, et al.

adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions

[J]. Molecules, 2015, 20: 16004

DOI      PMID      [本文引用: 1]

The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

Ma F B, Zhang Y, Wang H J, et al.

Inhibition behavior of chitooligosaccharide derivatives for carbon steel in 3.5% NaCl solution

[J]. Int. J. Electrochem. Sci., 2018, 13: 235

DOI      URL     [本文引用: 1]

Valente M A G, Teixeira D A, Azevedo D L, et al.

Caprylate salts based on amines as volatile corrosion inhibitors for metallic zinc: Theoretical and experimental studies

[J]. Front. Chem., 2017, 5: 32

DOI      PMID      [本文引用: 1]

The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.

Sun D, Li W, Wei R Z, et al.

Theoretical evaluation of 2-aminofluorenic double schiff base corrosion inhibitor based on quantum chemistry

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 405

[本文引用: 1]

孙 丹, 李 伟, 魏润芝 .

基于量子化学的2-氨基芴双希夫碱缓蚀剂的理论评价

[J]. 中国腐蚀与防护学报, 2021, 41: 405

[本文引用: 1]

Sun X, Qiang Y J, Hou B R, et al.

Cabbage extract as an eco-friendly corrosion inhibitor for X70 steel in hydrochloric acid medium

[J]. J. Mol. Liq., 2022, 362: 119733

DOI      URL     [本文引用: 1]

Hu H H, Chen C F.

Mechanism of temperature influence on adsorption of schiff base

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 786

[本文引用: 1]

胡慧慧, 陈长风.

温度影响席夫碱缓蚀剂吸附的机理研究

[J]. 中国腐蚀与防护学报, 2021, 41: 786

DOI      [本文引用: 1]

研究了所合成的两种含有苯基基团的席夫碱缓蚀剂 (BB-S缓蚀剂和B-S缓蚀剂) 在不同温度下对N80钢在0.5%盐酸溶液中的缓蚀作用,探讨了温度影响席夫碱缓蚀剂的吸附机理。结果表明,BB-S缓蚀剂和B-S缓蚀剂的缓蚀效率随着温度的升高而降低,且B-S缓蚀剂的缓蚀效率在不同温度下始终大于BB-S缓蚀剂的缓蚀效率。分子动力学和量子化学计算方法表明,两种席夫碱缓蚀剂的缓蚀效率随温度的升高而降低,该现象与席夫碱缓蚀剂中苯环较大的空间位阻、分子热运动、分子吸附构型以及前线轨道能级密切相关。

Sun J L, He J Q.

Application of quantum chemical calculation and molecular dynamics simulation in metal-working fluids investigations

[J]. Pet. Process. Petrochem., 2022, 53(2): 6

[本文引用: 1]

孙建林, 贺佳琪.

量子化学计算和分子动力学模拟在金属加工液研究中的应用

[J]. 石油炼制与化工, 2022, 53(2): 6

[本文引用: 1]

/