中国腐蚀与防护学报, 2023, 43(5): 1119-1125 DOI: 10.11902/1005.4537.2022.341

海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏

混凝土界面处理工艺对劈裂粘结性能的影响

石建光,1, 陈银平1, 李国聪1, 谢益人2

1.厦门大学建筑与土木工程学院土木工程系 厦门 361000

2.厦门合立道工程设计集团股份有限公司 厦门 361000

Effect of Different Interface Treatment Processes on Anti-stripping Performance of Low Shrinkage-high Viscosity Multi-element Composite Mortar Repaired Concrete Workpiece

SHI Jianguang,1, CHEN Yinping1, LI Guocong1, XIE Yiren2

1.Department of Civil Engineering, School of Architecture and Civil Engineering, Xiamen University, Xiamen 361000, China

2.Xiamen Helidao Engineering Design Group Co., Ltd., Xiamen 361000, China

通讯作者: 石建光,E-mail:jgshi798@xmu.edu.cn,研究方向为历史建筑混凝土耐久性加固与防护

收稿日期: 2022-11-03   修回日期: 2023-01-01  

基金资助: 厦门市鼓浪屿管委会项目.  XDHT2020145A

Corresponding authors: SHI Jianguang, E-mail:jgshi798@xmu.edu.cn

Received: 2022-11-03   Revised: 2023-01-01  

Fund supported: Xiamen Gulangyu Management Committee Program.  XDHT2020145A

作者简介 About authors

石建光,男,1962年生,博士,教授

摘要

为探究低收缩高粘性多元复合修复砂浆 (LSHVRM) 修复混凝土不同界面处理工艺对粘结性能的影响,试验设计54个修复试件。研究了针对混凝土的界面碳化程度以及是否埋置钢筋的不同工况,采用涂刷迁移型阻锈剂、喷涂DPS补强剂和涂刷迁移型阻锈剂、钢筋锈蚀转化等处理工艺对粘结性能的影响。试验结果表明: 混凝土表面碳化程度对粘结性能的影响很小,表面涂刷迁移型阻锈剂不会对粘结性能产生不利影响,影响幅度在-1.4%~6.8%之间;喷涂DPS补强剂对粘结性能均有提高,提高幅度在2.7%~7.4%之间。混凝土界面有锈蚀钢筋时,经过钢刷处理后对粘结性能的影响很小,幅度在-2.7%~5.4%之间;喷涂DPS补强剂和涂刷迁移型阻锈剂对粘结性能有提高,提高幅度在0.6%~6.9%之间;钢筋锈蚀转化剂后再喷涂DPS补强剂对粘结性能均有提高,提高幅度在4.5%~16.6%之间。混凝土表面不同碳化程度下,锈蚀钢筋钢刷处理、涂刷迁移型阻锈剂和钢筋锈蚀转化等界面处理工艺对粘结性能不会产生不利影响,对粘结性能均有提高,但幅度有限。

关键词: 低收缩高粘性多元复合修复砂浆 ; 界面处理工艺 ; 锈蚀钢筋转化 ; 迁移型阻锈剂 ; 粘结性能

Abstract

In order to reveal the effect of different interface treatment processes on the bonding properties of low shrinkage and high viscosity multi-element composite repair mortar (LSHVRM) to the repaired concrete workpiece, 54 repair test-pieces were designed. The effect of treatment processes, such as brushing migration corrosion inhibitor, spraying DPS reinforcing agent, brushing migration corrosion inhibitor and chemical conversion of corrosion products on steel bar on the anti-stripping performance of the repaired workpieces were studied especially, focusing on the influence of carbonization degree of concrete interface at the site to be repaired and whether there are steel bars buried or not. The results show that the carbonization degree of the surface of the repairing concrete has only a little effect on the bonding performance, namely the surface brushing migration type rust inhibitor resulted in an effect range between -1.4% and 6.8%. The spraying DPS reinforcing agent resulted in an increase range of 2.7%-7.4%. In case, rust steel bars emerged at the interface, the effect of steel brush treatment brought an effect range of -2.7% to 5.4%. However, The combination of spraying DPS reinforcing agent and brushing migration corrosion inhibitor could increase the bonding performance within a range of 0.6% and 6.9%. The spraying DPS reinforcing agent after the treatment with chemical conversion agent for rust steel bars could provide an increasing effect within a range of 4.5% and 16.6%. In general, the interface treatment process, such as steel brush treatment of steel bar, brush migration corrosion inhibitor and chemical conversion treatment of the rust steel bar, will bring little adverse effect on the bonding performance of the repaired concrete, while bring improvement effect within a small range, although these treatment methods has induced different degrees of carburization for the surface of repairing concrete.

Keywords: low shrinkage and high viscosity multiple composite repair mortar ; interface treatment process ; transformation of corroded steel bar ; migrating rust inhibitor ; bonding performance

PDF (9326KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

石建光, 陈银平, 李国聪, 谢益人. 混凝土界面处理工艺对劈裂粘结性能的影响. 中国腐蚀与防护学报[J], 2023, 43(5): 1119-1125 DOI:10.11902/1005.4537.2022.341

SHI Jianguang, CHEN Yinping, LI Guocong, XIE Yiren. Effect of Different Interface Treatment Processes on Anti-stripping Performance of Low Shrinkage-high Viscosity Multi-element Composite Mortar Repaired Concrete Workpiece. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(5): 1119-1125 DOI:10.11902/1005.4537.2022.341

历史建筑中随处可见混凝土的保护层开裂、钢筋锈蚀胀裂等现象,需采取修缮、加固措施。对历史建筑的修缮、加固不能过多损伤混凝土结构,所以混凝土界面处理就成为了关键问题[1~3]

相关研究表明[3~8]:混凝土质量、界面粗糙程度、钢筋锈蚀程度、界面剂性能等因素均对混凝土的界面粘结劈裂强度产生重要影响。胡良明等[9]利用劈拉试验探究了水泥净浆界面剂的粘结性能随着水灰比的增大而降低的影响。Al-Sulaimani等[10]和Auyeung等[11]通过拉拔试验证明钢筋锈蚀率为1%时是粘结强度的临界点。张小平等[12]论证复合型阻锈剂对混凝土的工作性能、现场施工无负面影响,并提高混凝土的抗压强度。目前对于混凝土常采用的界面处理主要有物理法、化学试剂法,物理法有高压水射法、人工凿毛法、喷蒸汽法等方式,化学试剂包括粉类界面剂、乳液界面剂等[13,14]。调研表明,鼓浪屿上1920年左右的历史建筑混凝土现场实测强度在C10~C15之间[1]。因此,找到一种针对历史建筑混凝土界面不同碳化程度以及锈蚀钢筋不同工况,且施工方便、性能可靠的修复工艺与修补材料具有重要意义。本工作设置6种施工工艺,按界面处涂刷钢筋锈蚀转化剂、基体DPS补强剂和混凝土表面阻锈剂进行简化施工的实验研究。

1 实验方法

试验浇筑混凝土平均抗压强度为13.9 MPa。将已锈蚀钢筋钢筋 (ϕ12 mm,L=130 mm) 进行分组编号1#、2#、3#、4#、5#。钢筋锈蚀率 (%) 分别为5.19%、5.33%、5.48%、5.41%、5.34%。采用自主研制的低收缩高粘性多元复合修复砂浆 (LSHVRM)[15],28 d抗压强度为51.3 MPa,抗弯强度为14.6 MPa,单轴拉伸强度为4.9 MPa,28 d粘结拉伸强度1.97 MPa,7 d收缩率0.53%,28 d收缩率0.82%,稠度为65~75 mm。

DPS补强剂主要成分为聚碳酸酯活化二氧化硅,渗透深度可达20 mm;ZX-03锈蚀转化剂使钢筋表面钝化;PCI-2015阻锈剂为混合型水溶液,其性能指标如表1所示。

表1   修复材料性能指标

Table 1  Repair material properties

MaterialDPS reinforcing agentZX-03 corrosion conversion agentPCI-2015 rust inhibitor
AppearanceTransparenceBrownish blackAmber
Density1.10 g/cm3-0.88-1.00 kg/L
pH value11-10-12
Viscosity11.1/s-11 mPa·s
Surface tension20.7 mN/m-32.5
Gelation time280 min--
State-Liquid-
Active ingredient content-72%-
Volatile organic compounds content-<60 g/L-
Amount of coating-0.3-0.7 kg/m2-
Drying time (25 ℃)-12 h-
Surface tension-≈32.5 mN/m
Flash point-≥90 ℃

新窗口打开| 下载CSV


将钢刷处理后钢筋埋置在基体中,如图1a所示,加载过程如图1b所示。试件制作及养护符合GB/T50081-2019规范规定,按GB/T50082-2009规范模拟加速碳化混凝土基体,采用FEITecnaiG2F20型号场发射扫描电子显微镜 (SEM) 观测碳化后孔隙的变化形貌。

图1

图1   修复混凝土基体及混凝土试件劈裂加载示意图

Fig.1   Schematic diagram of repairing concrete matrix (a) and splitting loading (b) of concrete specimens


设置6种界面处理工艺,分别为无埋置钢筋、埋置钢筋、钢筋锈蚀转化、混凝土基体补强、混凝土表面处理措施,如表2所示。混凝土基体界面经碳化处理后,采用灌砂法[16]测量界面的粗糙度。

表2   模拟混凝土界面处理工艺

Table 2  Interface treatment process of simulated concrete

Process name No.ClassificationTreatment of corroded steel barMatrix reinforcementConcrete surface protection
Measure 1

No embedded

steel at interface

---
Measure 2--PCI-2015 rust inhibitor
Measure 3-DPS reinforcing agentPCI-2015 rust inhibitor
Measure 4

Embedded steel

bar at interface

Steel brush to remove rust--
Measure 5Steel brush to remove rustDPS reinforcing agentPCI-2015 rust inhibitor
Measure 6ZX-03 corrosion conversion agentDPS reinforcing agentPCI-2015 rust inhibitor

新窗口打开| 下载CSV


2 结果与讨论

2.1 试件破坏现象

低收缩高粘性多元复合修复砂浆 (LSHVRM) 与加速碳化混凝土的粘结劈拉强度按照(1)式计算[16]

fts=FπA=0.637FA

式中:fts为复合构件的粘结劈裂强度,MPa;F为破坏荷载,N;A为劈裂面面积,mm2

试验所得数据代入 (1) 式计算得出试验结果,平均劈裂强度结果如表3所示。

表3   劈裂试验平均劈裂强度结果

Table 3  Average splitting tensile strength results of splitting tensile test

Sample No.Steel specificationsCarbonization duration / dProcess name No.Splitting strength / MPaMaximum error / %
1-7Measure 11.492.01
2-7Measure 21.523.28
3-7Measure 31.585.06
4ϕ=12 mm7Measure 41.452.06
5ϕ=12 mm7Measure 51.559.03
6ϕ=12 mm7Measure 61.699.46
7-14Measure 11.461.36
8-14Measure 21.441.39
9-14Measure 31.503.33
10ϕ=12 mm14Measure 41.482.70
11ϕ=12 mm14Measure 51.532.61
12ϕ=12 mm14Measure 61.553.22
13-28Measure 11.482.02
14-28Measure 21.588.22
15-28Measure 31.596.91
16ϕ=12 mm28Measure 41.568.33
17ϕ=12 mm28Measure 51.574.45
18ϕ=12 mm28Measure 61.639.20

新窗口打开| 下载CSV


劈裂实验破坏形式分为混凝土基体内聚破坏、粘结修复界面破坏和混凝土基体与界面混合破坏3种[17,18],由于试验采用LSHVRM砂浆28 d的抗压强度达到51.3 MPa,其强度远高于混凝土基体强度,因此并未出现修复砂浆内聚破坏现象。图2为混凝土基体内聚破坏,图2a表现为界面处凹凸不平,大量混凝土基体脱落黏附于LSHVRM砂浆,图2b混凝土基体内粗骨料脱落、钢筋周围砂浆破坏,界面处大面积砂浆黏附于LSHVRM砂浆上。原因在于当施加荷载时,加速碳化后的混凝土试件与LSHVRM砂浆界面之间产生拉力,说明该情况下,粘结强度主要由加速碳化后的混凝土基体强度控制。

图2

图2   混凝土基体内聚破坏形貌

Fig.2   Images of cohesive failure of concrete matrix of measure 1 treatment interface (a) and measure 4 treatment interface (b)


图3为粘结修复界面破坏形式,表现为界面两侧光滑平整、钢筋周围的混凝土完整,未见粗骨料断裂现象。从图3a可以看出,LSHVRM砂浆一侧存在孔隙,而加速碳化后的混凝土基体界面并未出现破坏现象,有学者指出[19],在疏松的空洞区,大尺寸钙矾石和氧化钙晶体数量显著增加,从而引起粘结强度下降。图3b为埋置钢筋试件,混凝土基体在加载位置出现粉碎破坏现象,但由于LSHVRM砂浆内纤维的存在,粉碎部分并未出现砂浆脱落现象,整个粘结界面较为完整。

图3

图3   粘结修复界面破坏形貌

Fig.3   Images of bond repair interface damage of measure 2 treatment interface (a) and measure 5 treatment interface (b)


图4a为混凝土基体与界面混合破坏形式,表现为界面中心区域混凝土基体黏附于LSHVRM砂浆一侧,边界部分平整光滑。图4b除界面中心区域破坏外,埋置钢筋被拔出黏附于LSHVRM砂浆。当施加荷载时,LSHVRM修复砂浆与混凝土基体充分粘结的部位由于基体强度不足而产生受拉破坏。

图4

图4   混凝土基体与界面混合破坏形貌

Fig.4   Images of mixed failure of concrete matrix and interface of measure 3 treatment interface (a) and measure 6 treatment interface (b)


2.2 破坏试件分析

图5a可以看出,随着混凝土基体加速碳化时长增加,碳化14 d的劈拉强度略低于7、28 d的劈拉强度。这是由于在加速碳化14 d时混凝土内部孔隙率达到最大[22],劈裂试件后的界面存在大量孔隙以及分层剥离状态,孔隙的存在会影响界面处的力学性能。这说明加速碳化时长对混凝土的粘结性能影响较小。

图5

图5   工艺1~6的混凝土劈裂强度

Fig.5   Concrete splitting strength of measure 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)


图5b中PCI-2015迁移型阻锈剂作用在钢筋表面,对混凝土的微观孔结构、抗中性化和抗氯离子的渗透性影响较大。碳化7、14和28 d下的平均劈拉强度为1.52、1.44和1.58 MPa,变化幅度-1.4%~6.8%之间,同样说明了混凝土表面不同碳化程度下PCI-2015涂刷迁移型阻锈剂对粘结性能的影响较小。图5c是混凝土界面喷涂DPS补强剂和PCI-2015迁移型阻锈剂,DPS补强剂会渗透入混凝土内部,并与混凝土中的游离碱离子产生反应,生成性质稳定的枝蔓状晶体物质,增强混凝土界面的强度。碳化时长7、14、28 d下的平均劈拉强度提高幅度2.7%~7.4%之间,说明混凝土表面不同碳化程度下喷涂DPS补强剂对粘结性能均有所提高。

图5d-f中混凝土界面内均埋置锈蚀钢筋。从图5d中可以看出,碳化时长7、14和28 d下的平均劈拉强度为1.45、1.48和1.56 MPa,而且对粘结性能的影响幅度在-2.7%~5.4%之间波动,说明钢刷处理对于锈蚀钢筋来说,差异性不大,混凝土表面不同碳化程度下锈蚀钢筋经过钢刷处理后对粘结性能的影响很小。图5e中与图5c的差异在于混凝土界面内埋置锈蚀钢筋,经过7、14、28 d的碳化时长下的平均劈拉强度为1.55、1.53、1.57 MPa,提高幅度0.6%~6.9%之间。这是由于DPS补强剂增强混凝土表面强度外,PCI-2015迁移型阻锈剂中阻锈成分以液态和气态的形式渗透,形成峰状粒子吸附于钢筋表面,表面粗糙度提高LSHVRM砂浆与锈蚀钢筋的机械咬合力。图5f中,锈蚀钢筋采用ZX-03锈蚀转化剂处理,其碳化时长7、14和28 d下的平均劈拉强度为1.69、1.55、1.63 MPa。说明混凝土表面不同碳化程度下,钢筋锈蚀转化剂后喷涂DPS补强剂和PCI-2015涂刷迁移型阻锈剂均可以提高粘结性能,提高幅度4.5%~16.6%之间。

同期浇筑的混凝土基体试件碳化时长7、14和28 d的平均碳化深度为7.9、15.6、20.1 mm,混凝土基体碳化深度与碳化时间成正比。从图6b观察不同时长碳化下深度孔隙的变化SEM形貌可以看出,混凝土内部孔隙数量明显增多、孔径增大,混凝土基体强度变低导致粘结性能下降;当加速碳化28 d后,内部孔隙孔径减少,高倍镜下颗粒状碳酸钙的存在,说明混凝土基体内发生碳化,此时混凝土基体强度增加,从而促进粘结性能。

图6

图6   碳化混凝土基体微观形貌

Fig.6   Carbonation depth of concrete matrix under 7 d (a), 14 d (b), 28 d (c, d) carbonation time


为了进一步探究ZX-03锈蚀转化剂对混凝土界面的影响,对ZX-03锈蚀转化剂处理的混凝土界面进行电镜 (SEM) 观测,样品编号Y-1#、Y-2#。从图7a, b明显看出,未采用ZX-03锈蚀转化剂的Y-1#样品粘结处存在空隙以及细微裂缝;图7c, d为Y-2#样品,对比Y-1#和Y-2#样品微观表征,内掺3%D-ZX阻锈剂改善孔隙和收缩,提高了混凝土的密实度,这有利于抵抗氯盐等侵蚀,并且提高混凝土界面处的分子间作用力。

图7

图7   混凝土界面(Y-1#)和3%D-ZX阻锈剂(Y-2 #)的表面形貌

Fig.7   SEM of images of concrete interface (Y-1#) (a, b) and 3% D-ZX rust inhibitor (Y-2#) (c, d)


3 结论

(1) 混凝土内无埋置锈蚀钢筋时,界面不同碳化程度、涂刷PCI-2015迁移型阻锈剂对粘结性能的影响较小;由于DPS补强剂增强混凝土界面的强度,当界面同时喷涂DPS补强剂和PCI-2015迁移型阻锈剂时,粘结性能有所提高,提高幅度2.7%~7.4%之间,碳化时长28 d,效果最佳。

(2) 混凝土界面埋置锈蚀钢筋时,钢刷处理后不同碳化程度对粘结性能的影响幅度在-2.7%~5.4%之间,影响较小;界面喷涂DPS补强剂和PCI-2015迁移型阻锈剂时,粘结性能有所提高,随着碳化时长增加,提升幅度下降;经ZX-03锈蚀转化剂增强钢筋氧化膜后,界面喷涂DPS补强剂和涂刷PCI-2015迁移型阻锈剂可大幅提高粘结性能,提高幅度4.5%~16.6%之间。

(3) ZX-03阻锈剂能够改善孔隙和孔径收缩,当掺量为3%时,混凝土的密实度、分子间作用力效果最为明显;混凝土基体碳化时长7、14和28 d下平均碳化深度为7.9、15.6、20.1 mm,14 d的孔隙数量明显增多、孔径增大,混凝土基体强度变低导致粘结性能下降。

参考文献

Hu H M, Zhu J, Liu T, et al.

Deterioration status and reason analysis of concrete components in Gulangyu historic buildings

[J]. J. Xiamen Univ. (Nat. Sci.), 2022, 61: 298

[本文引用: 2]

胡红梅, 朱 杰, 刘 涛 .

鼓浪屿历史建筑混凝土构件劣化现状及原因分析

[J]. 厦门大学学报(自然科学版), 2022, 61: 298

[本文引用: 2]

Ministry of Housing and Urban-Rural Development of the People's Republic of China. 14th five-year plan for building energy conservation and green building development [S]. Beijing: China Building Industry Press, 2022

中华人民共和国住房和城乡建设部. “十四五”建筑节能与绿色建筑发展规划 [S]. 北京: 中国建筑工业出版社, 2022

Jiang J, Wang J Y, Jin W J, et al.

Research progress on corrosion and anti-corrosion technology of ribbed steel

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 439

[本文引用: 2]

姜 军, 王军阳, 金武俊 .

带肋钢腐蚀及其防腐蚀技术研究进展

[J]. 中国腐蚀与防护学报, 2021, 41: 439

[本文引用: 2]

Yuan Q, Liu J.

Study on adhesive shear strength of young on old concrete

[J]. J. Build. Struct., 2001, 22(2): 46

袁 群, 刘 健.

新老混凝土粘结的剪切强度研究

[J]. 建筑结构学报, 2001, 22(2): 46

Zhang M J, Chu L S, Zhao J F, et al.

Experimental study on splitting strength of new-to-old concrete in short age

[J]. Sichuan Build. Sci., 2018, 44(5): 106

张明杰, 楚珑晟, 赵杰夫 .

短龄期旧混凝土与新混凝土劈裂强度的研究

[J]. 四川建筑科学研究, 2018, 44(5): 106

Cui H.

Influencing factors and mechanism of bonding between new and old concrete under the action of new interfacial agents

[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018

崔 寒.

新型界面剂作用下新老混凝土粘结影响因素及机理研究

[D]. 郑州: 华北水利水电大学, 2018

Da B, Yu H F, Ma H Y, et al.

Influence of inhibitors on reinforced bar corrosion of coral aggregate seawater concrete

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 152

达 波, 余红发, 麻海燕 .

阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响

[J]. 中国腐蚀与防护学报, 2019, 39: 152

Ma Q, Cai J S, Mu S, et al.

Composite organic compound as corrosion inhibitor for reinforced steel in simulated concrete pore solution or mortar specimen

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 659

[本文引用: 1]

马 麒, 蔡景顺, 穆 松 .

有机氨基醇阻锈剂在混凝土模拟孔隙液和砂浆试块中对钢筋的阻锈作用

[J]. 中国腐蚀与防护报, 2021, 41: 659

[本文引用: 1]

Hu L M, Ma C M, Xu C G, et al.

Impacts from different bonding agents on bonding strength between new and old concretes of second age

[J]. Water Resour. Hydropower Eng., 2016, 47(11): 40

[本文引用: 1]

胡良明, 马朝猛, 徐晨光 .

不同界面剂对第二龄期新老混凝土粘结强度的影响

[J]. 水利水电技术, 2016, 47(11): 40

[本文引用: 1]

Al-Sulaimani G J, Kaleemullah M, Basunbul I A.

Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members

[J]. ACI Struct. J., 1990, 87: 220

[本文引用: 1]

Auyeung Y, Balaguru P, Chung L.

Bond behavior of corroded reinforcement bars

[J]. ACI Mater. J., 2000, 97: 214

[本文引用: 1]

Zhang X P, Yan H, Liu X X, et al.

Effect of composite rust inhibitor on corrosion resistance of reinforcement in concrete and its application research

[J]. New Build. Mater., 2021, 48(11): 64

[本文引用: 1]

张小平, 严 涵, 刘喜旭 .

复合型阻锈剂对混凝土中钢筋耐蚀性的影响及应用研究

[J]. 新型建筑材料, 2021, 48(11): 64

[本文引用: 1]

Zhao Z F, Zhou H G, Yuan Q, et al. Study on Bonding Mechanism of New and Old Concrete and its Engineering Application [M]. Beijing: Water Resources and Hydropower Press, 2003

[本文引用: 1]

赵志方, 周厚贵, 袁 群 . 新老混凝土粘结机理研究与工程应用 [M]. 北京: 水利水电出版社, 2003

[本文引用: 1]

Ministry of Housing and Urban-Rural Development of the People's Republic of China. JG/T 468-2015 Interface primer for building wall [S]. Beijing: Standards Press of China, 2015

[本文引用: 1]

中华人民共和国住房和城乡建设部. JG/T 468-2015 墙体用界面处理剂 [S]. 北京: 中国标准出版社, 2015

[本文引用: 1]

Zhu J.

Study on low shrinkage and high viscosity multi-component composite repair mortar for historical building restoration

[D]. Xiamen: Xiamen University, 2022

[本文引用: 1]

朱 杰.

历史建筑修复用低收缩高粘性多元复合修复砂浆研究

[D]. 厦门: 厦门大学, 2022

[本文引用: 1]

Zhao Z F, Zhao G F.

Experimental research on treating interface of young on old concrete with high pressure water jet method

[J]. J. Dalian Univ. Technol., 1999, 39: 558

[本文引用: 2]

赵志方, 赵国藩.

采用高压水射法处理新老混凝土粘结面的试验研究

[J]. 大连理工大学学报, 1999, 39: 558

[本文引用: 2]

Cao W L, Lin D Z, Qiao Q Y, et al.

Experimental study on bond-slip properties and influence factors between rebars and recycled concrete

[J]. J. Nat. Disasters, 2017, 26(5): 36

[本文引用: 1]

曹万林, 林栋朝, 乔崎云 .

钢筋与再生混凝土粘结性能及影响因素研究

[J]. 自然灾害学报, 2017, 26(5): 36

[本文引用: 1]

Wang X A.

Study on bond-slip behavior of steel bar and concrete subjected to freezing-thawing and stirrup corrosion

[D]. Harbin: Harbin University of Technology, 2019

[本文引用: 1]

王轩昂.

考虑冻融和箍筋锈蚀影响的钢筋混凝土粘结性能试验研究

[D]. 哈尔滨: 哈尔滨工业大学, 2019

[本文引用: 1]

Li G Y, Xie H C, Xiong G J.

Bonding model and microstructure analysis of new and old concrete

[J]. Concrete, 1999, (6): 13

[本文引用: 1]

李庚英, 谢慧才, 熊光晶.

新老混凝土的粘结模型及微观结构分析

[J]. 混凝土, 1999, (6): 13

[本文引用: 1]

Zhao Y R, Yu B T, Wang L, et al.

Effect of carbonization on concrete pore structure

[J]. Concrete, 2021, (12): 7

赵燕茹, 喻泊厅, 王 磊 .

碳化对混凝土孔结构的影响

[J]. 混凝土, 2021, (12): 7

/