中图分类号: O646
通讯作者:
收稿日期: 2013-10-9
修回日期: 2013-10-9
网络出版日期: --
版权声明: 2014 《中国腐蚀与防护学报》编辑部 版权所有 2014, 中国腐蚀与防护学报编辑部。使用时,请务必标明出处。
基金资助:
作者简介:
朱娟,女,1988年生,硕士生,研究方向为金属材料腐蚀与防护
展开
摘要
综述了金属材料在流体冲刷条件下的腐蚀研究现状、不同环境因素和材料性质对冲刷腐蚀机理的影响规律。冲刷腐蚀主要由冲刷磨损和电化学腐蚀组成,对总腐蚀速率的贡献与各种环境因素有关。材料冲刷腐蚀防护主要可从金属材料元素含量、热处理制度和表面处理3个方面入手。同时,探讨了冲刷腐蚀研究的未来发展趋势。
关键词:
Abstract
The current situation of study on erosion-corrosion mechanism and the influence of different environmental factors and alloy properties on erosion-corrosion is reviewed in this paper. The erosion-corrosion is mainly composed of two parts: erosion wear and electrochemical corrosion, of which the contribution to the total erosion-corrosion rate may depend upon the environmental factors. To protect metallic materials from erosion-corrosion the following measures may be effective: i.e. proper selection and addition of alloying elements, proper heat treatment and applied surface coatings as well. Meanwhile, the paper discusses the development of erosion-corrosion research in the future.
Keywords:
流体作用下的金属材料容易发生冲刷腐蚀。这种腐蚀在海洋环境及石油管道运输中十分常见,其在工业磨损中所占比重大于5%[
冲刷腐蚀是一个十分复杂的过程,影响腐蚀速率的因素有很多,主要包括:液体流速[
目前,国内外学者对冲刷腐蚀进行了较深入的研究,主要采用电化学测试手段及失重方法研究了不同流体力学条件、环境因素、材料性质对金属冲刷腐蚀的影响作用。丁一刚等[
本论文主要对冲刷腐蚀机理、影响冲刷腐蚀的因素等进行概括,并从元素含量、热处理制度及金属基复合材料发展等几个方面综述提高金属材料防冲刷腐蚀性能的几种方法,重点介绍冲刷腐蚀的国内外最新研究进展,为金属冲刷腐蚀的研究与防护提供依据和帮助。
由机械磨损和电化学腐蚀的相互作用引起的金属材料的腐蚀速率大于两者单独作用时的腐蚀速率之和[
其中,KC0和KE0分别为单独的电化学腐蚀速率和冲刷磨损腐蚀速率,ΔKC和ΔKE分别为冲刷磨损对电化学腐蚀的加强及电化学腐蚀对冲刷磨损的增强部分。KC0可通过测定静止溶液中金属材料的腐蚀速率得到,KE0可通过测定电极施加阴极保护后的冲刷磨损速率得到[
一般来说,机械磨损在金属的冲刷腐蚀中占主要作用[
Jana等[
其中,c为沙含量,Ui为流体流速,EM为无因次侵蚀率。根据Finnie第一和第二模型[
从式 (2) 可以看出,机械磨损主要受流体流速和溶液含沙量影响,并与冲刷角、沙粒及金属的性质有关系。然而,Meng等[
Neville等[
Yu等[
流体力学因素对类似于不锈钢的钝化金属的极化曲线影响较大,这与不锈钢表面快速形成的附着力较强的钝化膜有关。当电极表面无钝化膜形成时,机械磨损对金属材料的自腐蚀电位和电化学腐蚀速率影响较小。而对于能够形成钝化膜的金属材料,在一定的腐蚀环境中发生机械磨损时,钝化膜因溶液中粒子高频率的冲击而受损;当钝化膜的破坏/再钝化交替发生时,电极表面的电化学反应速率迅速增加,从而加速了不锈钢的腐蚀速率[
Stack等[
Stack等[
流体冲刷加剧金属电化学腐蚀主要包括两方面[
腐蚀对冲刷的影响主要在于粗化材料表面,造成微湍流的形成,同时溶解掉材料表面的加工硬化层,降低其疲劳强度,从而促进冲刷[
实验室研究冲刷腐蚀的装置主要有3类:旋转圆盘 (柱) 电极 (RDE/RCE)[
一般来说,使用RDE和RCE研究水动力流体条件对金属冲刷腐蚀影响时,旋转圆盘或圆柱很难使得底部的沙粒全部均匀悬浮在溶液中,因此,实验中改变沙粒含量时,腐蚀速率随沙含量的变化不显著;喷射式装置则可以用于研究流体中固体粒子的机械撞击对腐蚀的影响。RDE和RCE分别用于产生层流与湍流,当旋转速度够高时,RDE也可以产生过渡或者相对的湍流[
郑玉贵等[
目前,国内外研究冲刷腐蚀的方法主要分为两大类:实验测试和数值模拟。
实验测试研究主要包括:采用极化曲线[
在目前的冲刷腐蚀研究中,采用计算流体动力学 (CFD) 软件进行数值模拟,是使用最为广泛的数值模拟方式。
通过模拟金属材料在冲刷条件下的腐蚀进行腐蚀机理研究,对流态进行数值仿真模拟计算,可以减少实验和设计工作的盲目性和工作量,降低消耗并增加可靠度。Stack等[
除采用CFD软件外,部分研究者自主设计软件,用来模拟冲刷腐蚀。林玉珍和雍兴跃[
流体环境中,金属基体在静态溶液中形成的表面氧化膜难以持续存在,腐蚀加剧[
Meng等[
式中,N为沙粒单位时间内撞击电极表面的次数,mav为沙粒的平均质量,V为沙粒的运动速率。
6.1.1 流速对冲刷腐蚀的影响 在冲刷腐蚀过程中,流体流速发挥着重要的作用,其影响着传质过程尤其是腐蚀粒子Cl-的传递[
流速对冲刷腐蚀的影响可分为3种情况[
吴成红等[
此外,Ruff等[
6.1.2 沙含量的影响 流体中的沙粒加速了金属的腐蚀。沙粒对电极表面氧化膜的冲击破坏使得金属裸露在流体中,或者沙粒冲击电极表面使得氧化膜难以形成,导致电化学腐蚀及其与冲刷磨损的协同效应部分对整个电极失重贡献很大[
冲刷腐蚀速率随着溶液中沙含量的增加而上升[
冲刷腐蚀程度并不随着含沙量的升高而一直加剧。Meng等[
6.1.3 沙粒大小对冲刷腐蚀的影响 冲刷腐蚀速率随着溶液中沙含量及沙粒尺寸的增加而增大[
Zheng等[
当沙粒尺寸达到临界值后,电极表面的冲刷磨损速率不会随沙粒尺寸的增大而增大;可能的一种解释为颗粒大的沙粒易发生碎裂,导致实际的撞击能小于实验条件下理论的撞击能[
另外,沙粒本身的性质也会影响金属冲刷腐蚀速率。随着电极材料硬度与沙粒硬度比值的增大,机械磨损速率迅速降低,而电化学腐蚀速率则与该硬度比值无关[
6.1.4 温度的影响 流体温度升高,一方面使得O2扩散速率增大,金属表面易于生成钝化膜;另一方面,流体粘度降低,撞击能增大,电极表面的损坏程度加剧,导致电荷转移速率增大[
Ping等[
6.1.5 冲刷角 (攻角) 的影响 含沙流体中,流体冲刷作用对冲刷磨损影响较大[
Tang等[
邢建东等[
6.1.6 pH值、含氧量对冲刷腐蚀的影响 溶液的pH值不同,金属的冲刷腐蚀速率也不同。这是由于表面生成膜的成分及其性质不同所致。例如,在一定流速下当溶液pH值降低到3.6,在铜镍合金表面不能形成保护膜,耐冲刷能力降低。
有钝化特性的金属只有当介质中加入了足够的氧化剂,才能产生钝态。而不具有钝化特性的金属,O2的存在 (特别是在中性条件下) 将加速阳极金属的溶解。对铜合金而言,在脱氧的海水和淡水中,其腐蚀速率大为降低[
6.1.7 环境因子的协同作用 条件参数之间的相互作用关系是十分重要的[
在同时考虑温度、流体速度和沙含量3个环境因素对材料冲刷腐蚀速率 (失重) 的影响时,得到各环境因素对腐蚀速率的贡献比重。例如,流速的贡献比重如下:
其中,V(%) 表示流速的贡献比重,SSV表示流速的影响,SSS为沙含量的影响,SST为温度的影响,SSVS为液体流速与沙含量的协同影响,SSVT为水流速率与温度的协同影响,SSTS为温度和沙含量的协同影响,SSTVS为三者的协同影响。
其中,
WHV和WLV分别为8次实验高、低流速时的材料失重平均值,WG为8种实验条件下材料失重的平均值。同样可以计算出其它6个环境因素的影响值。
运用该模型计算得到对UNS S31603不锈钢影响最大的环境因素为溶液流速,这与Luo等[
7.1.1 元素含量 金属中特定元素的存在及其含量会对金属抗冲刷腐蚀能力产生很大的影响[
表1 UNS S32654钢和UNS S31603钢中的元素组成[10]
Table 1 Chemical compositions of UNS S32654 and UNS S31603 steels[10] (mass fraction / %)
Steel | Cr | Ni | Mo | Mn | C | N |
---|---|---|---|---|---|---|
UNS S32654 | 24 | 22 | 7.3 | 3.5 | 0.01 | 0.5 |
UNS S31603 | 16~18 | 10~14 | 3.5 | 0.8 | 0.03 | --- |
研究[
Wu等[
在金属基体中加入Cr后,由于形成更好的保护钝化膜、碳化物和硬沉淀,合金的抗冲刷腐蚀能力增强[
Ni可以稳定不锈钢的奥氏体相进而增强电极表面的钝化能力[
7.1.2 合金种类 吴成红等[
7.2.1 σ相 钢中γ相具有韧性好、形变强化能力高等特点,α相硬度也较低,σ相却具有较脆、硬度较高的特点。金属的耐磨性与硬度有很大的相关性[
然而,耐蚀性和耐磨性很多情况下都是矛盾的[
此外,材料的凝固速率能在很大程度上影响钢的主要组成元素在γ相与σ相之间的分布,进而影响其抗冲刷腐蚀性能[
7.2.2 非晶态合金 电化学腐蚀弱化材料的晶界、相界,使材料中耐磨的硬化相暴露、突出基体表面,使之易折断甚至脱落,促进冲刷[
Zheng等[
陶瓷具有较高的硬度、耐磨、耐蚀、耐热和抗高温氧化性能,因此,合金中掺杂陶瓷粒子可以大大改善其耐磨损性能。硬质颗粒WC及TiC 作为硬质相掺入合金中使用较多,TiN 也有一些研究[
7.3.1 硬质颗粒掺杂对合金抗冲刷腐蚀能力的影响 Xu等[
Neville等[
此外,温度较高时,因为电化学腐蚀作用,基体相的相对较快腐蚀导致WC颗粒不受保护,使金属腐蚀加剧[
然而,Zheng等[
7.3.2 影响金属基复合材料抗冲刷磨损的因素 金属基复合材料抗冲刷磨损能力主要取决于材料的点阵韧性和材料中增强粒子的硬度,并与硬质相 (增强粒子) 的体积分数、尺寸和分布有关[
陶瓷颗粒尺寸对材料耐磨性也会产生重要影响。对掺杂WC硬质颗粒的合金而言,一般认为,在松散硬质磨料中,WC硬质合金的耐磨性随WC颗粒尺寸的减小而增加;而对于承受冲击载荷、对抗压强度要求高的各类工具,则一般选用韧性较好的粗颗粒[
(1) CFD软件建模。通过实验数据,建立系统的数据库,用统计的方法进行数据分析,可为未来冲刷腐蚀模型的建立提供指导方向,可以更加清楚地理解流速、沙含量以及温度等因素对合金腐蚀性能的影响。
(2) 新的测试方法的使用。传统冲刷腐蚀主要采用失重、极化曲线和EIS等方法研究环境因素对冲刷腐蚀的影响。有研究表明,声发射可测取材料局部腐蚀产生的超声弹性波,是研究高低温下腐蚀现象的强有力工具[
(3) 耐冲刷腐蚀材料的发展。通过类似等离子喷焊 (PTA)、热喷涂、激光堆焊等耐磨堆焊技术,激光熔覆,铸渗等手段向合金掺杂纳米陶瓷颗粒,对材料表面进行改性处理,提高基体的抗冲刷腐蚀能力[
[1] |
The influence of corrosion on the wear of cast iron in sulphuric acid solutions [J].
|
[2] |
Fluid mechanics factors on the corrosion mechanism of the effect of erosion [J].
流体力学因素对冲刷腐蚀的影响机制 [J].
|
[3] |
Electrochemical and mechanical interactions during erosion-corrosion of a high-velocity oxy-fuel coating and a stainless steel [J].
|
[4] |
A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications [J].
|
[5] |
Some thoughts on modelling the effects of oxygen and particle concentration on the erosion-corrosion of steels in aqueous slurries [J].
|
[6] |
Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel [J].
|
[7] |
A comparative study of the slurry erosion and free-fall particle erosion of aluminium [J].
|
[8] |
The influence of corrosion on the erosion of aluminium by aqueous silica slurries [J].
|
[9] |
Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glycol-water solution by impingement jet system [J].
|
[10] |
A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design [J].
|
[11] |
Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion [J].
|
[12] |
Methods of measuring wear-corrosion synergism [J].
|
[13] |
Mechanisms of wear on a Co-base alloy in liquid-solid slurries [J].
|
[14] |
Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore [J].
|
[15] |
Erosion-corrosion behaviour of WC-based MMCs in liquid-solid slurries [J].
|
[16] |
Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry I: Effects of hydrodynamic condition [J].
|
[17] |
Synergistic effects of fluid flow and sand particles on erosion-corrosion of aluminum in ethylene glycol-water solutions [J].
|
[18] |
Modelling impact angle effects on erosion-corrosion of pure metals: construction of materials performance maps [J].
|
[19] |
Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution [J].
|
[20] |
An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs [J].
|
[21] |
Laser cladding of stainless steel with Ni-Cr3C2 and Ni-WC for improving erosive-corrosive wear performance [J].
|
[22] |
An improved wear-resistant PTA hardfacing: VWC/stellite 21 [J].
|
[23] |
Erosion-corrosion of metals in liquid-solid two-phase flow [J].
金属在液固两相流中的冲刷腐蚀 [J].
|
[24] |
A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions [J].
|
[25] |
A methodology for the construction of the erosion-corrosion map in aqueous environments [J].
|
[26] |
Corrosion and synergy in a WC-Co-Cr HVDF thermal spray coating-understanding their role in erosion-corrosion degradation [J].
|
[27] |
Erosion-corrosion behavior of nano-particle-reinforced Ni matrix composite alloying layer by duplex surface treatment in aqueous slurry environment [J].
|
[28] |
The synergistic effect between erosion and corrosion in acidic slurry medium [J].
|
[29] |
The influence of applied potential on the erosion-corrosion behavior of AISI321 stainless steel in acidic slurry medium [J].
|
[30] |
Recent development of studies in erosion-corrosion [J].
冲刷腐蚀的研究近况 [J].
|
[31] |
Review of contemporary approaches to study of synergism between erosion and corrosion in slurry erosion [J].
泥浆型冲蚀中冲刷和腐蚀交互作用研究综述 [J].
|
[32] |
Erosion of surfaces by solid particles [J].
|
[33] |
An examination of the electrochemical characteristics of two stainless steels (UNS S32654 and UNS S31603) under liquid-solid impingement [J].
|
[34] |
The cavitation erosion and erosion-corrosion behavior of carbon steel in simulating solutions of three rivers of China [J].
|
[35] |
Effects of particle angular velocity and friction force on erosion enhanced corrosion of 304 stainless steel [J].
|
[36] |
Accelerative effect of wear on corrosion of high-alloy stainless steel [J].
|
[37] |
Depassivation and repassivation of AISI321 stainless steel surface during solid particle impact in 10%H2SO4 solution [J].
|
[38] |
Mapping erosion-corrosion of WC/Co-Cr based composite coatings: particle velocity and applied potential effects [J].
|
[39] |
Development of experimental device and dynamic electrochemical test for erosion-corrosion in Liquid-solid two-phase flow [J].
液/固双相流冲刷腐蚀实验装置的研制及动态电化学测试 [J].
|
[40] |
Electrochemical measurements in flowing solutions [J].
|
[41] |
Mass transfer to a rotating disk [J].
|
[42] |
The corrosion of carbon steel in oil-in-water emulsions under controlled hydrodynamic conditions [J].
|
[43] |
Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel [J].
|
[44] |
Electrochemical studies of anodic dissolution of mild steel in a carbonate-bicarbonate buffer under erosion-corrosion conditions [J].
|
[45] |
Erosion-corrosion of chromium steel in a rotating cylinder electrode system: some comments on particle size effects [J].
|
[46] |
Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J].
|
[47] |
The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow [J].
|
[48] |
Detecting electrochemical transients generated by erosion-corrosion [J].
|
[49] |
Improvement in the corrosion-erosion resistance of 304 stainless steel with alloyed yttrium [J].
|
[50] |
Erosion-corrosion interactions and their effect on marine and offshore materials [J].
|
[51] |
Mapping erosion-corrosion of carbon steel in oil exploration conditions: Some new approaches to characterizing mechanisms and synergies [J].
|
[52] |
Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater [J].
铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为 [J].
|
[53] |
The electrochemical response of stainless steels in liquid-solid impingement [J].
|
[54] |
Erosion-corrosion of mild steel in hot caustic. Part I: NaOH solution [J].
|
[55] |
Investigation of erosion-corrosion processes using electrochemical noise measurement [J].
|
[56] |
Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution [J].
|
[57] |
Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions [J].
|
[58] |
Acoustic emission study of active-passive transitions during carbon steel erosion-corrosion in concentrated sulfuric acid [J].
|
[59] |
Some comments on mapping the combined effects of slurry concentration, impact velocity and electrochemical potential on the erosion-corrosion of WC/Co-Cr coatings [J].
|
[60] |
Repassivation kinetics parameter method-A new method for rapid evaluating the erosion-corrosion resistance of stainless alloys [J].
快速评价合金耐冲刷腐蚀性能的再钝化动力学参数法 [J].
|
[61] |
Mapping erosion-corrosion of carbon steel in oil-water solutions: Effects of velocity and applied potential [J].
|
[62] |
Particle concentration and size effects on the erosion-corrosion of pure metals in aqueous slurries [J].
|
[63] |
Application of numerical method to study of flow-induced corrosion-(I) Metal corrosion under laminar condition [J].
数值计算法在流体腐蚀研究中的应用-(I) 层流条件下金属的腐蚀 [J].
|
[64] |
Application of numerical method to study of flow-induced corrosion-(II) Metal corrosion under turbulent condition [J].
数值计算法在流体腐蚀研究中的应用-(II) 湍流条件下金属的腐蚀 [J].
|
[65] |
Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system [J].
碳钢在固/液两相流条件下流动腐蚀的数值模拟 [J].
|
[66] |
Numerical simulation of flow induced corrosion of duplex stainless steel in liquid-particle two-phase in-pipe flow [J].
双相不锈钢管固液两相流动腐蚀的数值模拟 [J].
|
[67] |
Establishment and experimental verification of hydrodynamic model for impingement corrosion apparatus [J].
喷射腐蚀试验装置流体力学模型的建立与试验验证 [J].
|
[68] |
EIS of duplex stainless steel in flowing corrosive media [J].
流动腐蚀介质中双相不锈钢的电化学阻抗谱 [J].
|
[69] |
Numerical simulation of erosion-corrosion in the liquid-solid two-phase flow [J].
|
[70] |
Erosion-corrosion of 2205 duplex stainless steel in flowing seawater containing sand particles [J].
|
[71] |
Flow induced corrosion: 25 years of industrial research [J].
|
[72] |
Erosion-corrosion of metals in two-phase water slurry [J].
金属在两相流动水体中的冲刷腐蚀 [J].
|
[73] |
Erosion by solid particle impact [J].
|
[74] |
A study of erosion phenomena [J].
|
[75] |
Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4%NaCl solution [J].
|
[76] |
Slurry erosion resistance of fusion-bonded epoxy powder coating [J].
|
[77] |
The interaction of particle and material behaviour in erosion processes [J].
|
[78] |
Investigation to erosion-corrosion behavior of stainless steel and high carbon steel [J].
不锈钢与高碳钢的冲刷腐蚀磨损试验研究 [J].
|
[79] |
Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J].
|
[80] |
Effect of aging temperature one erosion-corrosion behavior of 17-4PH stainless steels in dilute sulphuric acid slurry [J].
|
[81] |
The influence of impingement angle on the erosion of ductile metals by angular abrasive particles [J].
|
[82] |
The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential [J].
|
[83] |
Chemo-mechanical effects of flow on corrosion [J].
|
[84] |
Improving the erosion-corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C [J].
|
[85] |
Surface analysis of passive state [J].
|
[86] |
The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J].
|
[87] |
Synergistic abrasive corrosive wear of chromium-containing steels [J].
|
[88] |
Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion [J].
|
[89] |
Influence of the sigma phase precipitation on the microstructure and properties in duplex stainless steel [J].
σ相的析出对双相不锈钢组织性能的影响 [J].
|
[90] |
Effect of solution annealing temperature on corrosive wear behaviour of duplex stainless steel in sulphuric acid medium [J].
固溶处理温度对双相不锈钢在硫酸介质中腐蚀磨损行为的影响 [J].
|
[91] |
Erosion-corrosion resistant alloy development for aggressive slurry flows [J].
|
[92] |
Erosion-corrosion synergism and erosion-corrosion resistant alloy development [J].
冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计 [J].
|
[93] |
Hard phase in steel bonded carbide [J].
钢结硬质合金中的硬质相 [J].
|
[94] |
Metal-matrix composite coatings by PTA surfacing [J].
|
[95] |
Research on WC reinforcedmetal matrix composite [J].
WC颗粒增强耐磨材料的研究现状 [J].
|
[96] |
Modeling solid-particle erosion of ductile alloys [J].
|
[97] |
Corrosion and erosion damage mechanisms during erosion-corrosion of WC-Co-Cr cermet coatings [J].
|
[98] |
|
[99] |
Effect of curing degree and fillers on slurry erosion behavior of fusion-bonded epoxy powder coatings [J].
|
/
〈 |
|
〉 |