Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 856-860    DOI: 10.11902/1005.4537.2021.280
Current Issue | Archive | Adv Search |
Surface Stabilization and Rust Structure of Weathering Steel
SHI Jian(), HU Xuewen, HE Bo, YANG Zheng, WANG Fei, GUO Rui
Technology Center of Masteel, Ma'anshan Iron and Steel Co. Ltd., Ma'anshan 243000, China
Download:  HTML  PDF(10521KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming at the problem of emerging traces of fluid flow containing rust products on the surface of the bare weathering steel during real service in atmosphere, a stabilizing treatment solution for the weathering steel was designed, and after stabilization treatment, the weathering steel was exposed in a real atmosphere for 0.5 a. The evolution process of the forming rust layer on the weathering steel was monitored and characterized. The corrosion kinetic curve shows that the weight variation of weathering steel gradually reaches a stable state through four stages, and the mass gain (loss) of each stage changes linearly. The enrichment of Cu and Cr in the rust increases the electrochemical protectiveness of the rust layer, reduces the corrosion rate and shortens the stabilization process of the bare weathering steel.

Key words:  surface rust stabilizer      weathering steel      enrichment     
Received:  11 October 2021     
ZTFLH:  TG172  
Corresponding Authors:  SHI Jian     E-mail:  stoneshi810@163.com
About author:  SHI Jian, E-mail: stoneshi810@163.com

Cite this article: 

SHI Jian, HU Xuewen, HE Bo, YANG Zheng, WANG Fei, GUO Rui. Surface Stabilization and Rust Structure of Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 856-860.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.280     OR     https://www.jcscp.org/EN/Y2022/V42/I5/856

Fig.1  Corrosion kinetic curve (a), corrosion rate kinetic curve (b) and corrosion mass loss rate (c) of weathering steel
PhaseFitting equationabR2
Firsty=-1.71+3.71x-1.713.711
Secondy=21.63+1.20x21.631.200.989
Thirdy=42.53+0.20x42.530.200.941
Lasty=60.74-0.21x60.74-0.210.991
Table 1  Fitting results of corrosion kinetic curve of weathering steel
Fig.2  Macroscopic corrosion morphologies of weathering steel exposed 9 d (a), 30 d (a), 90 d (c) and 180 d (d)
Fig.3  Corrosion SEM morphologies of sample surface weathering steel exposed 9 d (a), 30 d (b), 90 d (c, d) and 180 d (e, f)
Fig.4  Polarization curves of weathering steels
T / dEcorr / VIcorr / μA·cm-2
9-0.4131.53
30-0.2715.78
90-0.145.24
180-0.121.47
Table 2  Fitting result of polarization curves
Fig.5  Cross-section corrosion morphologies of weathering steel exposed 9 d (a), 30 d (b), 90 d (c) and 180 d (d)
Fig.6  Distribution of elements in rust layer of weathering steel cross-section (180 d): (a) Cu, (b) Cr, (c) Fe, (d) O, (e) Si
1 Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness [J]. Corros. Sci., 2004, 46: 169
doi: 10.1016/S0010-938X(03)00130-6
2 Liu T, Wang S M, Zhao X J. Stabilization treatment and formation of rust layer on weathering steel [J]. China Surf. Eng., 2019, 32(6): 98
刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成 [J]. 中国表面工程, 2019, 32(6): 98
3 Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
doi: 10.1016/j.corsci.2006.06.016
4 Liang C F, Hou W T. The effect of alloying in carbon steels and low alloy steels on their atmospheric corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 87
梁彩凤, 侯文泰. 合金元素对碳钢和低合金钢在大气中耐腐蚀性的影响 [J]. 中国腐蚀与防护学报, 1997, 17: 87
5 Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4wt%-Cu 0.5wt%-Cr 0.5wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
doi: 10.1016/j.corsci.2014.07.011
6 Chen X H, Dong J H, Han E-H, et al. Effect of Ni on the ion-selectivity of rust layer on low alloy steel [J]. Mater. Lett., 2007, 61: 4050
doi: 10.1016/j.matlet.2007.01.014
7 Zhong B, Xu X L, Chen Y Q, et al. Electrochemical impedance spectrum for corrosion of a weathering steel 09CuPCrNi-A in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 437
钟彬, 徐小连, 陈义庆 等. 09CuPCrNi-A耐大气腐蚀钢电化学阻抗研究 [J]. 腐蚀科学与防护技术, 2011, 23: 437
8 Shi Z J, Wang L, Chen N, et al. Research status and development on surface rust layer and stabilizing treatment of weathering steels [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
石振家, 王雷, 陈楠 等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503
9 Liu G C, Dong J H, Han E-H, et al. Progress in research on rust layer of weathering steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 268
刘国超, 董俊华, 韩恩厚 等. 耐候钢锈层研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 268
10 Gao L J, Yang J W, Yu D Y, et al. A new rust stabilization treatment of weathering steel and its periodic immersed corrosion resistance in 3.5%NaCl solution [J]. Surf. Technol., 2017, 46(8): 234
高立军, 杨建炜, 于东云 等. 耐候钢新型表面锈层稳定剂处理及其耐3.5%NaCl溶液周浸腐蚀性能 [J]. 表面技术, 2017, 46(8): 234
11 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
刘海霞, 黄峰, 袁玮 等. 690MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
12 Ishikawa T, Minamigawa M, Kandori K, et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. J. Electrochem. Soc., 2004, 151: B512
doi: 10.1149/1.1778167
13 Choi Y S, Shim J J, Kim J G. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water [J]. J. Alloy. Compd., 2005, 391: 162
doi: 10.1016/j.jallcom.2004.07.081
14 Misawa T, Kyuno T, Suëtaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels [J]. Corros. Sci., 1971, 11: 35
doi: 10.1016/S0010-938X(71)80072-0
15 Hao X C, Xiao K, Zhang H Q, et al. Influence of alloying elements Cu and Cr on the corrosion resistance of weathering steels in simulated ocean atmospheric environment [J]. Mater. Prot., 2009, 42(1): 21
郝献超, 肖葵, 张汉青 等. 模拟海洋大气环境下Cu和Cr对耐候钢耐腐蚀性能的影响 [J]. 材料保护, 2009, 42(1): 21
16 Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
doi: 10.1016/j.corsci.2017.03.012
17 Shi J, Hu X W, He B, et al. Sulfuric acid corrosion resistance of Q345NS steel welded joint [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 565
石践, 胡学文, 何博 等. Q345NS钢焊接接头耐硫酸腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 565
18 Li M S, Xin L, Qian Y H, et al. A review on studies of internal stress in oxide scales [J]. Corros. Sci. Prot. Technol., 1999, 11: 300
李美栓, 辛丽, 钱余海 等. 氧化膜应力研究进展 [J]. 腐蚀科学与防护技术, 1999, 11: 300
[1] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[2] SHI Jian, HU Xuewen, ZHANG Daoliu, CAO Huidan, HE Bo, PU Hong, GUO Rui, WANG Fei. Influence of Microstructure on Corrosion Resistance of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[3] Yue WANG, Zili LIU, Xiqin LIU, Shoudong ZHANG, Qinchao TIAN. Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[4] Piaopiao ZHANG,Zhongmin YANG,Ying CHEN,Huimin WANG. Corrosion Behavior of Cr Bearing Weathering Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[5] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
[6] WU Jun, WANG Xiujing, LUO Rui, ZHANG Sanping, ZHOU Jianlong. Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.
[7] ZHANG Yong, QIN Zuoxiang, XU Hongji, CHANG Kai, LU Xing, TONG Wei. CORROSION RESISTANCE OF DISSIMILAR METAL JOINTS OF ECONOMIC FERRITIC STAINLESS STEEL AND WEATHERING STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[8] WANG Bo, LU Kai, WANG Jianjing, JIANG Maofa,WANG Deyong, LIU Chengjun. CORROSION BEHAVIOR OF WEATHERING STEEL WITH HIGH MANGANESE CONTENT IN CONDITION SIMULATIING INDUSTRIAL ATMOSPHERE[J]. 中国腐蚀与防护学报, 2010, 30(4): 333-336.
[9] WANG Lei, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
[10] LI Qiaoxia WANG Zhenyao HAN Wei HAN Enhou. REVIEW ON ATMOSPHERIC CORROSION OF WEATHERING AND CARBON STEELS[J]. 中国腐蚀与防护学报, 2009, 29(5): 394-400.
[11] . A review on the progress of investigation on weathering steel and its rust layer[J]. 中国腐蚀与防护学报, 2007, 27(6): 367-372 .
[12] Qiaoxia Li; Zhenyao Wang; Wei Han; Enhou Han. CORROSION BEHAVIOR OF WEATHERING STEEL IN AWET/DRY ENVIRONMENT CONTAINING MgCl2[J]. 中国腐蚀与防护学报, 2006, 26(3): 136-410 .
[13] ;. EIS STUDY OF ACTIVATION MECHANISM OF ZINC IN ALUMINUM ZINC ALLOY[J]. 中国腐蚀与防护学报, 2005, 25(4): 213-217 .
[14] Cui Lin. THE INITIAL STAGE OF ATMOSPHERIC CORROSION OF CARBON AND WEATHERING STEEL IN BEIJING CITY ATMOSPHERE[J]. 中国腐蚀与防护学报, 2005, 25(4): 193-199 .
[15] . ANALYSIS ON THE CORROSION RUST OFWEATHERING STEEL EXPOSED IN ATMOSPHERE[J]. 中国腐蚀与防护学报, 2001, 21(5): 297-300 .
No Suggested Reading articles found!