Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 87-95    DOI: 10.11902/1005.4537.2019.237
Current Issue | Archive | Adv Search |
Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution
DAI Ting1, GU Yanhong1, GAO Hui1(), LIU Kailong1, XIE Xiaohui2, JIAO Xiangdong1
1.Beijing Key Laboratory of Key Technologies and Equipment for Deepwater Oil and Gas Pipelines, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.School of Energy and Power Engineering, Shanghai University of Technology, Shanghai 200093, China
Download:  HTML  PDF(29865KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The underwater friction stud welding (FSW) joint was obtained with X65 steel as substrate and 16Mn steel as stud. The electrochemical corrosion performance of the FSW joint and X65 steel in NaCl solution saturated with CO2 were studied by means of electrochemical methods, macroscopic- and microscopic-metallography, scanning electron microscope (SEM) with energy spectrum analyzer (EDS) and X-ray diffractometer (XRD). The results show that the open circuit potential of FSW joint is more positive, the impedance is larger and the corrosion current density is smaller, which indicates that the corrosion resistance of FSW joint is better than that of X65 pipeline steel. According to the microscopic metallography observation for every zone of the FSW joint, it is found that the corrosion in central welded zone is lighter, while the corrosion in upper heat affected zone, lower heat affected zone and base metal zone is more serious. The EDS and XRD results showed that the corrosion product of FSW joints is Fe2O3.

Key words:  FSW joint      X65 pipeline steel      electrochemical property      saturated CO2     
Received:  19 November 2019     
ZTFLH:  TG174.3  
Fund: Beijing Municipal Natural Science Foundation(3192013)
Corresponding Authors:  GAO Hui     E-mail:  gaohui@bipt.edu.cn

Cite this article: 

DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 87-95.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.237     OR     https://www.jcscp.org/EN/Y2021/V41/I1/87

Fig.1  Welding entity (a) and treated specimen (b) of FSW joint
Fig.2  Metallographic diagrams of plug rod (a), upper heat affected zone (b), weld seam (c), lower heat affected zone (d) and base metal (e) of initial FSW joint
Fig.3  Schematic diagram of test points on FSW joint (a) and corresponding measured values of hardness (b)
Fig.4  Open circuit potentials of X65 steel and FSW joint after immersion in CO2 saturated NaCl solution for 2 h (a), 4 h (b), 6 h (c) and 8 h (d)
Fig.5  Nyquist (a1~a4) and Bode (b1~b4) plots of X65 steel and FSW joint after immersion in CO2 saturated NaCl solution for 2 h (a1, b1), 4 h (a2, b2), 6 h (a3, b3) and 8 h (a4, b4)
Fig.6  Equivalent circuit diagram of EIS
Corrosion time / hTest pieceRs / Ω·cm2Rct / Ω·cm2CPE
2X656.621454.602.94×10-4
FSW13.970460.902.52×10-4
4X656.508827.603.01×10-4
FSW13.040431.503.25×10-4
6X656.501299.002.51×10-4
FSW11.990452.303.15×10-4
8X656.827378.502.46×10-4
FSW12.820513.603.49×10-4
Table 1  Fitting electrochemical parameters of EIS of X65 steel and FSW joint
Fig.7  Tafel diagrams of X65 steel and FSW joints corroded after immersion for 2 h (a), 4 h (b), 6 h (c) and 8 h (d)
Corrosion time / hX65FSW
Ecorr / VIcorr / μA·cm-2Ecorr / VIcorr / μA·cm-2
2-0.71424.998-0.74510.111
4-0.71215.465-0.73515.197
6-0.71532.215-0.72418.780
8-0.71528.349-0.71811.524
Table 2  Fitting results of X65 steel and FSW joint after corrosion for different time
Fig.8  Macroscopic metallographic diagrams of X65 steel after immersion for 0 h (a), 2 h (b), 4 h (c), 6 h (d) and 8 h (e)
Fig.9  Macroscopic metallographic diagrams of FSW joint after immersion for 0 h (a), 2 h (b), 4 h (c), 6 h (d) and 8 h (e)
Fig.10  Microscopic metallographics of X65 steel after immersion for 0 h (a), 2 h (b), 4 h (c), 6 h (d) and 8 h (e)
Fig.11  Metallographic diagrams of FSW joint after corrosion for 8 h: (a) plug rod, (b) upper heat affected zone, (c) weld seam, (d) lower heat affected zone, (e) base metal
Fig.12  XRD pattern of FSW joint after corrosion for 8 h
Fig.13  SEM image (a) and EDS result (b) of corrosion products formed on FSW joint after corrosion for 8 h
1 Hynes N R J, Nagaraj J, Sujana J A J. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints [J]. Mater. Des., 2014, 62: 118
2 Hynes N R J, Nagaraj J, Sujana J A J. Investigation on joining of aluminum and mild steel by friction stud welding [J]. Mater. Manufactur. Proc., 2012, 27: 1409
3 Morikawa K, Kawai G, Ochi H, et al. Strength of 2017 aluminium alloy stud joints by friction welding [J]. Weld. Int., 2013, 27: 18
4 Julian R D P, Mukherjee P, Verl A. Automatic close-optimal workpiece positioning for robotic manufacturing [J]. Proced. CIRP, 2018, 72: 277
5 Zhang X D, Deng C Y, Wang D P, et al. Improving bonding quality of underwater friction stitch welds by selecting appropriate plug material and welding parameters and optimizing joint design [J]. Mater. Des., 2016, 91: 398
6 Seli H, Ismail A I, Rachman E, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium [J]. J. Mater. Process. Technol., 2010, 210: 1209
7 Hynes N R J, Nagaraj P, Palanichamy R, et al. Numerical simulation of heat flow in friction stud welding of dissimilar metals [J]. Arab. J. Sci. Eng., 2014, 39: 3217
8 Yao F. Development of key equipment for robot friction stud welding system [D]. Nanjing: Nanjing University of Science and Technology, 2016
姚峰. 机器人摩擦螺柱焊接系统关键装备设计与研究 [D]. 南京: 南京理工大学, 2016
9 Zhang H Y. Study on friction stud welding technology and device of steel stud & aluminum plate dissimilar material [D]. Nanjing: Nanjing University of Science and Technology, 2015
张惠芸. 钢螺柱—铝板异种材料摩擦螺柱焊工艺和装置研究 [D]. 南京: 南京理工大学, 2015
10 Zhou C K. Study on friction stud welding of dissimilar material aluminum plate/steel stud [D]. Nanjing: Nanjing University of Science and Technology, 2017
周传昆. 铝板—钢螺柱异种材料摩擦螺柱焊工艺研究 [D]. 南京: 南京理工大学, 2017
11 Cui L. Research on the application foundation of underwater friction hydro pillar processing and friction taper plug welding technologies for marine steels [D]. Tianjin: Tianjin University, 2014
崔雷. 海洋工程用钢水下等静压摩擦柱塞焊接技术应用基础研究 [D]. 天津: 天津大学, 2014
12 Xu Y G, Jiao X D, Zhou C F, et al. Influence of rotation speed on mechanical properties of friction stud welding joints [J]. Electric Weld. Mach., 2015, 45(2): 23
徐亚国, 焦向东, 周灿丰等. 旋转速度对摩擦螺柱焊接头力学性能的影响 [J]. 电焊机, 2015, 45(2): 23
13 Xu Y G, Jiao X D, Zhou C F, et al. Effect of welding environment on forming quality of friction stud welding [J]. Weld. Technol., 2015, 44(2): 61
徐亚国, 焦向东, 周灿丰等. 焊接环境对摩擦螺柱焊成形质量的影响 [J]. 焊接技术, 2015, 44(2): 61
14 Gu Y H, Ma H J, Gao H, et al. Microstructure and local corrosion behavior of friction stud welding of 16Mn steel [J]. J. Shanghai Jiaotong Univ., 2017, 51(11): 70
顾艳红, 马慧娟, 高辉等. 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀 [J]. 上海交通大学学报, 2017, 51(11): 70
15 Ma H J, Gu Y H, Gao H, et al. Microstructure, chemical composition and local corrosion behavior of a friction stud welding joint [J]. J. Mater. Eng. Perform., 2018, 27: 666
[1] YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo, ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian. Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[2] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] Shuan LIU, Xia ZHAO, Changwei CHEN, Baorong HOU, Jianmin CHEN. Corrosion Behavior of Pipeline Steel X65 in Oilfield[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[5] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[6] YU Fang GAO Kewei LU Minxu. INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[1] . Study on High Temperature Oxidation of Al60Mn13Ti25V2 Intermetallic[J]. J Chin Soc Corr Pro, 2004, 24(3): 129 -134 .
[2] Jia WANG. ROLE OF SALT PARTICLE DEPOSITION IN THEINITIATION AND PROPAGATION OF ATMOSPHERIC CORROSION[J]. J Chin Soc Corr Pro, 2004, 24(3): 155 -158 .