Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 557-562    DOI: 10.11902/1005.4537.2019.230
Current Issue | Archive | Adv Search |
Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield
ZHAO Guoxian1,HUANG Jing1(),XUE Yan2
1. School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. Xi'an Maurer Petroleum Engineering Laboratory, Co. , Ltd. , Xi'an 710065, China
Download:  HTML  PDF(2202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 20G steel, L245 steel, 5Cr steel, 16Mn steel and 316L stainless steel in CO2 containing fluids at different temperatures and pressures was assessed by weight loss method via an autoclave, which aims to simulate the operating situation of the field. Then the morphology and composition of corrosion products were characterized by scanning electron microscopy (SEM), electronic energy spectrum (EDS) and X-ray diffraction (XRD). The results show that the average corrosion rate of 20G steel, L245 steel, 5Cr steel, 16Mn steel and 316L stainless steel increases first and then decreases with the increase of CO2 partial pressure at a given temperature, and with the increase of temperature by a given CO2 partial pressure respectively. The maximum average corrosion rate of the five materials emerged at 80 ℃ and 0.5 MPa of CO2 partial pressure. 20G steel, L245 steel, 5Cr steel and 16Mn steel were suffered from non-uniformly general corrosion with corrosion products composed mainly of FeCO3. Whilst 316L stainless steel was passivated with slight pitting corrosion in the corrosive medium.

Key words:  gathering pipeline      corrosion rate      gas phase      liquid phase     
Received:  27 March 2019     
ZTFLH:  TG172.8  
Fund: Supported by Innovation and Practical Ability Training Plan for Graduate Students of Xi'an Shiyou University(YCS18213110)
Corresponding Authors:  Jing HUANG     E-mail:  842587939@qq.com

Cite this article: 

ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 557-562.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.230     OR     https://www.jcscp.org/EN/Y2019/V39/I6/557

SteelCSiMnSPCrNiMoCuFe
20G0.1900.2700.7500.0300.030------------Bal.
L2450.1350.3501.3500.0070.015------------Bal.
5Cr0.0320.2500.432------5.0000.1500.4000.300Bal.
16Mn0.1380.3621.3790.0110.017------------Bal.
316L0.0210.6901.0500.0200.03117.61012.4502.290---Bal.
Table 1  Comparison of chemical constituents of five tested steels (mass fraction / %)
Cossive medium
CO32-1530.8
Cl-2150.0
HCO3-1631.2
SO42-584.4
Na++K+3462.8
Comditions
Temperature / ℃60; 80; 90; 100; 110
CO2 partial pressure / MPa0.01; 0.25; 0.50; 0.75; 1.00
Current speed / m·s-11
Time / h168
Table 2  Test conditions for corrosion rate measurement
Fig.1  Average corrosion rates trend of five materials in gas (a) and liquid (b) environment with temperature change under 0.5 MPa CO2 partial pressure
Fig.2  Average corrosion rates of five materials in gas (a) and liquid (b) environment with partial pressure of CO2 at 80 ℃
Fig.3  Surface microstructure of 20G steel (a, b), L245 steel (c, d), 5Cr steel (e, f), 16Mn steel (g, h) and 316L stainless steel (i, j) after testing in gas phase (a, c, e, g, i) and liqmid phase (b, d, f, h, j)
SteelCOSiMnFeCrNiMo
20G9.3624.420.650.2165.36---------
L24511.8336.88------51.29---------
5Cr11.1836.79------40.7511.28------
16Mn9.2432.74---0.6857.33---------
316L5.841.450.96---70.8211.837.461.64
Table 3  EDS analysis of corrosion products
Fig.4  XRD analytical atlas of the surface of 20G steel (a), L245 steel (b), 5Cr steel (c), 16Mn steel (d) and 316L stainless steel (e) after testing
[1] Hao M, Song Y C. Research status of CO2-EOR [J]. Drill. Product. Technol., 2009, 33(4): 59
[1] (郝敏, 宋永臣. 利用CO2提高石油采收率技术研究现状 [J]. 钻采工艺, 2009, 33(4): 59)
[2] Chi L Y. Carbon dioxide corrosion and technology study in the gathering and transportation system [D]. Daqing: Northeast Petroleum University, 2017
[2] (迟丽颖. 地面集输系统CO2腐蚀与防腐技术研究 [D]. 大庆: 东北石油大学, 2017)
[3] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41: 117
[4] Sun J B, Liu W, Chang W, et al. Characteristics and formation mechanism of CO2 corrosion product film of low chromium X65 pipeline steel [J]. Acta metall. Sin., 2009, 45(1): 84
[4] (孙建波, 柳伟, 常炜等. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制 [J]. 金属学报, 2009, 45(1): 84)
[5] Su J H, Zhang X Y, Wang F P, et al. CO2 corrosion of steels in high salinity solution [J]. Mater. Prot., 1998, 31(11): 21
[5] (苏俊华, 张学元, 王凤平等. 高矿化度介质中二氧化碳腐蚀金属的规律 [J]. 材料保护, 1998, 31(11): 21)
[6] Dugstad A, Lunde L, Videm K. Parametric study of CO2 corrosion of carbon steel [A]. Corrosion/94 [C]. Houston, TX: NACE International, 1994
[7] Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels [A]. Hausler R H, Godard H P. Advanced in CO2 Corrosion. Vol. 1 [C]. Houston, TX: NACE, 1984: 39
[8] Masamura K, Inohara Y, Minami Y. Effects of C and N on corrosion resistance of high Cr alloys in CO2 and H2S environments [A]. Corrosion/98 [C]. Houston: Omnipress, 1998
[9] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-a compendium [J]. Corrosion, 2003, 59: 659
[10] Videm K, Dugstad A, Lunde L. Parametric study of CO2 corrosion of carbon steel [A]. Corrosion/94 [C]. Houston: NACE International, 1994: 14
[11] Carlos A, Palacious T, Hernandez Y. Application of simulation techniquies for internal corrosion prediction [A]. Corrosion/97 [C]. Houston: NACE, 1997
[12] SridharSrinivasan, Kane R D. Prediction of corrosivity of CO2/H2S production environments [A]. Corrosion/96 [C]. Denver, Colorado: NACE, 1996
[13] Gray L G S, Anderson B G. Effect of PH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide [A]. Corrosion/90 [C]. Houston: NACE, 1990
[14] Chen C X, Li W S, Wang Q P, et al. Research on influencing factor of impact toughness in coarse grain heat-affected zone for X80 pipeline steel [J]. J. Mater. Eng., 2005, (5): 22
[14] (陈翠欣, 李午申, 王庆鹏等. X80管线钢焊接粗晶区韧化因素的研究 [J]. 材料工程, 2005, (5): 22)
[15] Heuer J K, Stubbins J F. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow [J]. Corrosion, 1998, 54: 566
[1] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[3] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[4] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[5] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[6] Ming ZHU,Yong YU,Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[7] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[8] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[9] Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[10] Yucheng ZHANG,Xinhua JU,Xiaolu PANG,Kewei GAO. Effect of O2 Concentration on Corrosion Rate of Steels in Supercritical CO2[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[11] ZHOU Nianguang, ZHA Fanglin, FENG Bing, HE Tiexiang. Application of Electrochemical Frequency Modulation for Study of Q235 Steel Corrosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(5): 445-450.
[12] LIU Zhiyong, JIA Jinghuan, DU Cuiwei, LI Xiaogang, WANG Liying. Corrosion Behavior of X80 and X52 Steels in Simulated Seawater Environments[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[13] ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, WANG Liye. Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[14] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] PENG Xin,WANG Jia,,WANG Jinlong,SHAN Chuan,JIA Honggang,
LIU Zaijian,WANG Haijie. Corrosion Electrochemical Parameters Test of Rusted Carbon Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.
No Suggested Reading articles found!