Please wait a minute...
J Chin Soc Corr Pro  2002, Vol. 22 Issue (5): 308-310     DOI:
Research Report Current Issue | Archive | Adv Search |
EFFECT OF HYDROGEN ON STRESS CORROSIONCRACKING OF LC4 ALUMINUM ALLOY
Jihua Liu;Di Li;Peifen Zhang
北京航空航天大学材料科学与工程系
Download:  PDF(103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of hydrogen on stress corrosion cracking (SCC) of the high-strength LC4 aluminum alloy in 3.5%NaCl solution has been stu died using slow strain rate tension technique.The experimental results showed th at the alloy is susceptible to SCC in humid air,especially in NaCl solution.SCC may occur in the mechanisms of anodic dissolution and hydrogen embrittlement,but the mechanisms would be varied under various conditions.In humid air,or under t he condition of anodic polarization in 3.5% NaCl solution,the mechanism of SCC i s mainly anodic dissolution.Under the condition of hydrogen pre-permeation or ca thodic polarization,hydrogen embrittlement plays a key role during the SCC proce ss.The results also indicated that the SCC resistance of LC4 alloy decreases wit h increasing the time of hydrogen pre-permeation.
Key words:  high-strength aluminum alloys      stress corrosion crackin g      slow strain rate tension      hydrogen embrittle     
Received:  17 November 2000     
ZTFLH:  TG172.9  
Corresponding Authors:  Jihua Liu     E-mail:  jhliu@sues.cn

Cite this article: 

Jihua Liu; Di Li; Peifen Zhang. EFFECT OF HYDROGEN ON STRESS CORROSIONCRACKING OF LC4 ALUMINUM ALLOY. J Chin Soc Corr Pro, 2002, 22(5): 308-310 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2002/V22/I5/308

[1]MearsRB ,BrownRH ,DixEH .AGeneralizedTheoryoftheStressCorrosionofAlloys[A].InSymposiumonStressCorrosionCrackingofMetals[C].ASTMandAIME ,1945:323
[2]SprowlsDO ,BrownRH .StressCorrosionMechanismsforAluminumAlloys[A].FundamentalAspectsofStressCorrosionCracking[C].NACE ,1969:466
[3]SpeidelMO .CurrentUnderstandingofStressCorrosionCrackingGrowthinAluminumAlloys[A].TheTheoryofStressCorrosionCrackinginAl loys[C].NATO ,1971:289
[4]GestRJ ,TroianoAR .Stresscorrosionandhydrogenembrittlementinanaluminumalloy[J].Corrosion,1974,30(8):274-279
[5]ScamansGM ,AlaniR ,SwannPR .Pre-exposureembrittlementandstresscorrosionfailureinAl-Zn-Mgalloys[J].Corros.Sci.,1976,16(7):443-459
[6]AlbrechtJ,ThompsonAW ,BernsteinIM .Theroleofmicrostructureinhydrogen-assistedfractureof7075aluminum[J].Metall.Trans.A ,1979,10(11):1759-1766
[7]ScamansGM .Evidenceforcrack-arrestmarkingsonintergranularstresscorrosionfracturesurfacesinAl-Zn-Mgalloys[J].Metall.Trans.A ,1980,11(5):846-850
[8]AlbrechtJ,BernsteinIM ,ThompsonAW .Evidencefordislocationtransportofhydrogeninaluminum[J].Metall.Trans.A ,1982,13(5):811-820
[9]HardwickDA ,ThompsonAW ,BernsteinIM .Theeffectofcoppercon tentandmicrostructureonthehydrogenembrittlementofAl-6Zn-2Mgalloys[J].Metall.Trans.A ,1983,14(12):2517-2526
[10]WeiRP ,PaoPS ,HartRG ,etal.Fracturemechanicsandsurfacechemistrystudiesoffatiguecrackgrowthinanaluminumalloy[J].Met all.Trans.A ,1980,11(1):151-158
[11]XiaoJimei.Hydrogenandmaterials[J].RareMetals,1985,4(2):2-18(肖纪美.氢与金属[J].稀有金属,1985,4(2):2-18)
[12]SpeidelMO .Stresscorrosioncrackingofaluminumalloys[J].Metall.Trans.A ,1975,6(4):631-651
[13]PathaniaRS ,TromansD .Initiationofstresscorrosioncracksinalu minumalloys[J].Metall.Trans.A ,1981,12(4):607-612
[14]GasemZuhairM ,GangloffRichardP .Effectoftemperonenvironmentalfatiguecrackpropagationin7000-seriesaluminumalloys[A].MaterSciForumVols331-337(2000)[C].Switzerland:2000TransTechPublications,2000,1479-1488
[15]TsengMK ,LiuJ ,JinZH .RoleofMgsegregationtograinboundaryinhydrogen-inducedcrackprocessof7050aluminumalloy[A].Alu minumAlloys’90,ICAA2[C].Beijing:InternationalAcademicPublish ers,662-666
[16]SongRG ,ZhangBJ ,ZengMG .Investigationofgrainboundarysegre gationandhydrogen-inducedfracturemechanisminhighstrengthalu minumalloy[J].J .ofAeronauticalMaterials,1997,17(1):31-38(宋仁国,张宝金,曾梅光.高强铝合金晶界偏析与氢致断裂机理的研究[J].航空材料学报,1997,17(1):31-38)
[1] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[9] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[10] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[11] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[12] TANG Zhanmei, HU Shilin, ZHANG Pingzhu. STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[13] DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[14] LIN Zhaoqiang, MA Li, YAN Yonggui. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[15] ZHANG Yu, SONG Renguo, TANG Puhong. HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY AND Mg-H INTERACTION IN 7075 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.
No Suggested Reading articles found!