Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 827-836    DOI: 10.11902/1005.4537.2024.190
Current Issue | Archive | Adv Search |
Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables
CHEN Siyu(), WANG Jingyu, GAO Liqiang
State Key Laboratory of Bridge Intelligent and Green Construction, China Railway Bridge Science Research Institute, Ltd., Wuhan 430050, China
Cite this article: 

CHEN Siyu, WANG Jingyu, GAO Liqiang. Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 827-836.

Download:  HTML  PDF(27970KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion kinetics and corrosion mechanism of Zn-Al alloy coated steel wire for 2100 MPa bridge cable in neutral salt spray environment were studied by means of electrochemical testing, corrosion loss measurement, scanning electron microscopy (SEM), X-ray diffractometer (XRD), ultra-depth of field microscopy (SDM) etc. The results show that the corrosion products of Zn-Al alloy coated steel wire are mainly composed of Zn(OH)2 and Zn5(OH)8Cl2·H2O, and a small amount of Al(OH)3 and Fe3O4. The corrosion behavior can be divided into four stages: the dissolution process of passivated film, the dissolution process of zinc-rich phase, the dissolution process related with the transition interval of zinc-rich phase and eutectic phase, and the dissolution process of Zn-Al eutectic phase. During the test period, the polarization resistance Rp of the Zn-Al alloy coating decreases first and then increase, indicating that its corrosion resistance becomes weak first and then becomes strong. In other word, the corrosion rate of the steel wire increases first and then decreases. There is no obvious corrosion pits formed on the steel wire matrix and no red corrosion products on the surface of the sample. The regression analysis of the corrosion-time curve shows that the corrosion rate increases slowly with the extension of the test time, indicating that the corrosion products have a delaying effect on corrosion, therefore, the Zn-Al alloy coated steel wire has a good corrosion resistance in the neutral salt spray environment.

Key words:  bridge cable wire      Zinc-aluminum alloy coating      salt spray corrosion properties      general corrosion     
Received:  24 June 2024      32134.14.1005.4537.2024.190
ZTFLH:  TD123  
Corresponding Authors:  CHEN Siyu, E-mail: 347108347@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.190     OR     https://www.jcscp.org/EN/Y2025/V45/I3/827

Fig.1  Sectional micromorphology of steel wire with zinc-aluminum alloy coating
Element123
Zn89.8658.6239.06
Al10.1432.7130.27
Fe-8.6730.67
Table 1  Chemical composition of zinc-aluminum coating on steel wire (mass fraction / %)
Fig.2  XRD pattern of zinc-aluminum alloy coating
Fig.3  Macro topographies of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g) and 960 h (h)
Fig.4  Macro topographies of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g), 960 h (h)
Fig.5  Ultradepth-of-field micrographs of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g) and 960 h (h)
Fig.6  Ultradepth-of-field micrographs of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g), 960 h (h), and then removing rust layers
Fig.7  SEM images of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g) and 960 h (h)
Fig.8  SEM images of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g), 960 h (h), and then removing rust layers
PositionZnAlFe
195.224.680.10
287.4511.680.87
373.6426.889.48
457.1531.7711.08
522.3247.7629.92
66.5522.6270.83
73.7619.5576.69
81.033.4995.48
Table 2  Chemical compositions of Zn-Al coated steel wire after neutral salt spray test for different time and then removing rust layers
Fig.9  EDS analysis results of Zn-Al coated steel wire after neutral salt spray test for 120 h (a), 240 h (b), 360 h (c), 480 h (d), 600 h (e), 720 h (f), 840 h (g) and 960 h (h)
Fig.10  XRD patterns of Zn-Al coated steel wire after neutral salt spray test for 240 h (a), 360 h (b), 480 h (c), 600 h (d), 720 h (e), 840 h (f) and 960 h (g)
Fig.11  Tafel polarization curves of Zn-Al coated steel wire after neutral salt spray test for 120-480 h (a) and 480-960 h (b)
t / hEcorr / VIcorr / A·cm-2
120-987.326.6557 × 10-6
240-1003.12.3864 × 10-6
360-1028.31.3183 × 10-5
480-1048.61.6816 × 10-5
600-988.841.7909 × 10-5
720-1002.91.6191 × 10-5
840-906.678.1244 × 10-6
960-865.187.7913 × 10-6
Table 3  Fitting electrochemical parameters of Zn-Al coated steel wire after salt spray test for different time
Fig.12  Electrochemical impedance diagrams of Zn-Al coated steel wire after salt spray test for different time: (a) Nyquist, (b) Bode, (c) equivalent circuit model
PeriodRs / Ω·cm-2Q1 / F·cm-2n1R1 / Ω·cm-2Q2 / F·cm-2n2R2 / Ω·cm-2Rp
120 h2.851 × 10-31.87 × 10-30.498835586.381 × 10-8115.913573.91
240 h107.533 × 10-40.501917954.387 × 10-8117.251812.25
360 h0.012.637 × 10-30.50211626.128 × 10-819.7741171.77
480 h0.011.098 × 10-20.4947358.73.664 × 10-8111.69370.39
600 h0.019.243 × 10-30.6885468.96.301 × 10-8110.56479.46
720 h0.012.967 × 1030.7173640.63.067 × 10-8113.49654.09
840 h0.016.037 × 10-30.74914575.535 × 10-8112.871469.87
960 h0.014.612 × 10-30.617825803.404 × 10-6121.42601.4
Table 4  Fitting data of electrochemical impedance spectroscopies dudu
Fig.13  Weight loss (a) and corrosion rate (b) curves of Zn-Al coated steel wire after salt spray corrosion for different time
[1] Wang Z G, Zhu X X, Zhao J, et al. Performance of galvanized zinc and zinc-aluminum alloy for high strength steel cables [J]. Corros. Prot., 2021, 42(7): 25
王志刚, 朱晓雄, 赵 军 等. 缆索用高强热浸镀锌及锌铝合金钢丝的性能 [J]. 腐蚀与防护, 2021, 42(7): 25
[2] Pistofidis N, Vourlias G, Konidaris S, et al. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection [J]. Mater. Lett., 2005, 60: 786
[3] Gong L H, Zhu Y Q, Qi X. Atmospheric corrosion propagation on galvanized steels underneath paints with scratchs [J]. Corros. Sci. Prot. Technol., 2009, 21: 530
龚利华, 朱玉巧, 戚 霞. 涂膜破坏后膜下镀锌钢板大气腐蚀扩展研究 [J]. 腐蚀科学与防护技术, 2009, 21: 530
[4] Mayrbaurl R M, Camo S. Cracking and fracture of suspension bridge wire [J]. J. Bridge Eng., 2001, 6: 645
[5] Ye H W, Wang Y Q, Sun P P. Experimental study on fatigue strength of galvanized steel wire corroded by bridge cables [J]. World Bridges, 2013, 41(4): 44
叶华文, 王义强, 孙鹏鹏. 桥梁缆索腐蚀镀锌钢丝的疲劳强度试验研究 [J]. 世界桥梁, 2013, 41(4): 44
[6] Nakamura S, Suzumura K, translated by Wang Y Q, Ye H W, Duan X. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires [J]. J. China Foreign Highw., 2014, 34(6): 110
Nakamura S, Suzumura K著, 王义强, 叶华文, 段熹 译. 腐蚀桥梁缆索的氢脆和腐蚀疲劳研究 [J]. 中外公路, 2014, 34(6): 110
[7] Xu W L, Ning S W, Luan B F, et al. Development of ultra-high strength galvanized steel wire for bridge cable [J]. Metal Prod., 2010, 36(2): 27
徐文雷, 宁世伟, 栾佰峰 等. 桥梁缆索用超高强度镀锌钢丝的研制 [J]. 金属制品, 2010, 36(2): 27
[8] He X, Wu M X, Yin L, et al. Damage evolution and fatigue life of steel wire with double corrosion pits for suspension bridge under wind-and traffic-loads [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1358
何 训, 吴梦雪, 尹 力 等. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1358
[9] Ye J M, Sun Y N. Application of zinc-aluminum alloy coated steel wire in cable bridge [J]. Metal Prod., 2016, 42(3): 42
叶觉明, 孙雨楠. 锌铝合金镀层钢丝在缆索桥梁上的应用 [J]. 金属制品, 2016, 42(3): 42
[10] Xiao W T, Liu J, Peng J J, et al. Corrosion resistance of two arc spraying coatings on EH36 steel in neutral salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1003
肖文涛, 刘 静, 彭晶晶 等. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1003
doi: 10.11902/1005.4537.2022.284
[11] Sui J L, Li X B, Lin Z F, et al. Corrosion resistance of two thermal sprayed Zn-Al alloy coatings in seawater at low temperatures [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 471
隋佳利, 李相波, 林志峰 等. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 471
doi: 10.11902/1005.4537.2015.188
[12] Shang T, Jiang G R, Liu G H, et al. Effect of heat treatment process on microstructure and corrosion resistance of Zn-6%Al-3%Mg coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1413
商 婷, 蒋光锐, 刘广会 等. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1413
[13] Yang L J, Zhang Y M, Song Z L. Influence of aluminium content on corrosion behavior of superplastic Zn-A1 alloys [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 491
杨丽景, 张阳明, 宋振纶. 铝含量对超塑性锌铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 491
[14] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 47
黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 47
[15] Xue H J, Zhao J, Wang J Y. Technology and quality control of zinc-aluminum alloy coated steel wire for Yalu River bridge [J]. Highway, 2015, 60(2): 105
薛花娟, 赵 军, 王吉英. 鸭绿江大桥锌铝合金镀层钢丝技术研究及质量控制 [J]. 公路, 2015, 60(2): 105
[16] Seré P R, Zapponi M, Elsner C I, et al. Comparative corrosion behaviour of 55Aluminium-zinc alloy and zinc hot-dip coatings deposited on low carbon steel substrates [J]. Corros. Sci., 1998, 40: 1711
[17] Lin K L, Yang C F, Lee J T. Correlation of microstructure with corrosion and electrochemical behavior of the batch-type hot-dip Al-Zn coatings: part I. Zn and 5%Al-Zn coatings [J]. Corrosion, 1991, 47: 9
[18] Cai Q, Li S X, Pu J B, et al. Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering [J]. Surf. Coat. Technol., 2018, 354: 194
[1] PENG Liyuan, XIE Jingli, CAO Shengfei, TAN Jibo, WU Xinqiang, ZHANG Ziyu. Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[2] PENG Dequan,HU Shilin,ZHANG Pingzhu,WANG Hui. Research on General Corrosion Property of 304L Stainless Steel in Simulated PWR Primary Water[J]. 中国腐蚀与防护学报, 2013, 33(4): 288-292.
No Suggested Reading articles found!