Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 787-794    DOI: 10.11902/1005.4537.2024.106
Current Issue | Archive | Adv Search |
Performance of RGO-CNTs Hybrid Material Modified RuO2-IrO2-SnO2/Ti Anode
ZHAO Fei1, WANG Dongwei1, GUO Quanzhong2(), WANG Chuan2
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Liaoning Province, Liaoning Key Laboratory of Material Environmental Corrosion and Evaluation, National Field Scientific Observation and Research Station of Soil and Atmospheric Environmental Material Corrosion in Shenyang, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110017, China
Cite this article: 

ZHAO Fei, WANG Dongwei, GUO Quanzhong, WANG Chuan. Performance of RGO-CNTs Hybrid Material Modified RuO2-IrO2-SnO2/Ti Anode. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 787-794.

Download:  HTML  PDF(5764KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By incorporation of reduced graphene oxide-carbon nanotubes (RGO-CNTs) in the oxide mixture RuO2-IrO2-SnO2 to prepare RGO-CNTs doped RuO2-IrO2-SnO2/Ti anode via multiple coating -calcination process. Then the surface morphology, structure, phase composition, and electrocatalytic activity of the anodes prepared at different calcination temperature were characterized by means of SEM, EDS, XRD, and electrochemical techniques, accordingly their electrolysis lifetime enhancement were also assessed. The results demonstrate that uniformly dispersed hybrid RGO-CNTs in the precursors still remain partially as elemental form in the acquired calcinates, with the increasing calcination temperature, the RGO-CNTs amount in the calcinates decreases. The doped RGO-CNTs can alleviate the thermal stress generated within the coating at high temperatures, improving the surface morphology of the anode with fewer and smaller thermal crack defects. Moreover, with the increasing calcination temperature, the doped RGO-CNTs may facilitate the precipitation of active RuO2 and IrO2 grains, enhancing the content of Ru and Ir in the coating, thereby enhance the electrolysis lifetime by 10%-30%, and voltammetric charge by 18.95%-26.57%. Consequently, the doped RGO-CNTs hybrid material can enhance the corrosion resistance and electrocatalytic activity of the metal oxide anode, therefore prolong its service life.

Key words:  titanium anode      carbon hybrid materials      RGO      CNTs      metal oxide     
Received:  01 April 2024      32134.14.1005.4537.2024.106
ZTFLH:  TG174.4  
Fund: National Key Research and Development Program(2021YFC2803102);Natural Science Foundation Special Project of Shenyang(23503605)
Corresponding Authors:  GUO Quanzhong, E-mail: qzguo@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.106     OR     https://www.jcscp.org/EN/Y2025/V45/I3/787

NumberCalcination temperature / ℃Doping
N1430None
H1430Addition of RGO-CNTs
N2450None
H2450Addition of RGO-CNTs
N3470None
H3470Addition of RGO-CNTs
Table 1  Sample identification and process conditions
Fig.1  Surface morphologies of metal oxide anodes at different sintering temperatures: (a) N1, (b) N2, (c) N3, (d) H1, (e) H2, (f) H3
Fig.2  Elemental analysis of bright precipitated grain: (a) surface morphology, (b) image of energy dispersive spectrometer
ElementRuIrSnCOTi
N117.9620.2834.891.9612.8312.08
H121.8521.4227.936.7813.588.44
N217.3020.1531.442.1413.1615.81
H220.6321.2623.536.1614.2614.16
N317.6920.2532.522.3213.2214.00
H319.7620.3228.925.6614.1311.21
Table 2  Spectral elemental analysis table of different metal oxide anodes (mass fraction / %)
Fig.3  XRD patterns of different metal oxide anodes
Fig.4  Nyquist (a) and Bode (b) plots of different metal oxide anodes in 3.5%NaCl solution
Fig.5  Equivalent circuit diagram of the anode
ElectrodeRs / Ω·cm2Qf / Ω-1·cm-2·s nnRf / Ω·cm2Qdl / Ω-1·cm-2·s nnRct / Ω·cm2
N17.1140.18760.711418.940.002620.701921.43
H17.1940.19980.777213.620.005810.685711.48
N27.0190.15440.213222.380.002080.868013.91
H27.5470.16860.124712.420.004240.79487.35
N37.4370.02570.334142.630.001950.812632.35
H37.1510.13460.16819.230.000970.822727.95
Table 3  Electrochemical impedance spectroscopy fitting data of different metal oxide anodes in 3.5%NaCl solution
Fig.6  CV curves of different metal oxide anodes in 3.5%NaCl solution
Fig.7  Linear sweep voltammetry curves of different metal oxide anodes in 26.5%NaCl solution
Fig.8  Enhanced electrolysis lifetime of different metal oxide anodes in 1 mol/L H2SO4 solution
[1] Xiang P, Luo H, Yang F, et al. Research status of anti-corrosion system for cathodic protection of marine steel structures [J]. Shandong Chem. Ind., 2023, 52(18): 115
向 攀, 罗 宏, 杨 飞 等. 海洋钢结构阴极保护的防腐体系研究现状 [J]. 山东化工, 2023, 52(18): 115
[2] Liu J, He Q W, Chen H, et al. Review on marine antifouling coatings [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 483
刘 姣, 何其伟, 陈 洪 等. 船舶防污涂料的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 483
[3] Hou S Z. Research and application of cathodic protection technology [J]. Total Corros. Control, 2018, 32(10): 39
侯世忠. 阴极保护技术的研究与应用 [J]. 全面腐蚀控制, 2018, 32(10): 39
[4] Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
李 科, 翟晓凡, 管 方 等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495
[5] Wang J J, Qin G T, Wei W. Progress of study on durabilities of ti based metal oxide anodes [J]. Corros. Prot., 2012, 33: 144
王晶晶, 秦国彤, 魏 微. 钛基金属氧化物阳极的耐用性研究进展 [J]. 腐蚀与防护, 2012, 33: 144
[6] Trasatti S. Electrocatalysis: understanding the success of DSA [J]. Electrochim. Acta., 2000, 45: 2377
[7] Li Z X, Wang H N, Zhao W. Current research situation and development trend of the biofouling and antifouling technology on titanium alloy [J]. Titanium Ind. Prog., 2015, 32(6): 1
李争显, 王浩楠, 赵 文. 钛合金表面海生物污损及防护技术的研究现状和发展趋势 [J]. 钛工业进展, 2015, 32(6): 1
[8] Wei H X, Yang J, Zhang Y F, et al. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries [J]. J. Colloid Interface Sci., 2018, 524: 256
[9] Li X J, Hui H H, Zhao J W, et al. Effect of MWCNTs content on corrosion resistance of chromium-free zinc-aluminum coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 324
李旭嘉, 惠红海, 赵君文 等. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 324
[10] Huang X, Yin Z Y, Wu S X, et al. Graphene‐based materials: synthesis, characterization, properties, and applications [J]. Small, 2011, 7: 1876
[11] Mehdipour M, Tabaian S H, Firoozi S. Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2-Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell [J]. Ceram. Int., 2019, 45: 19971
[12] Fan Y Z, Cheng X. Porous IrO2-Ta2O5 coating modified with carbon nanotubes for oxygen evolution reaction [J]. J. Electrochem. Soc., 2016, 163: E209
[13] Royaei N, Shahrabi T, Yaghoubinezhad Y. Corrosion modeling of dimensional stable anode modified by graphene compounds through a response surface methodology [J]. Mater. Res. Express, 2019, 6: 085530
[14] Ma H, Qiu H, Qi S H. Electrically conductive adhesives based on acrylate resin filled with silver-plated graphite nanosheets and carbon nanotubes [J]. J. Adhes. Sci. Technol., 2015, 29: 2233
[15] Chatterjee S, Nafezarefi F, Tai N H, et al. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J]. Carbon, 2012, 50: 5380
[16] Ning H L. Study on properties of titanium-based metal oxide anodes modified with graphene [D]. Jinan: Shandong University, 2015
宁慧利. 含石墨烯钛基金属氧化物阳极性能改进研究 [D]. 济南: 山东大学, 2015
[17] Wang K, Han Y, Wang J T, et al. The effect of solution concentration on properties of Ru-Ti-Ir oxide anode coatings [J]. J. Electrochem., 2006, 12: 74
王 科, 韩 严, 王均涛 等. 涂液浓度对Ru-Ti-Ir氧化物阳极涂层性能的影响 [J]. 电化学, 2006, 12: 74
[18] Zhang Z X, Zheng T. Selection of the electrolysis factors in forced life test of Ti-anode with coating [J]. Chlor-Alkali Ind., 2004, (5): 10
张招贤, 郑 团. 涂层钛阳极强化寿命试验电解因素的选择 [J]. 氯碱工业, 2004, (5): 10
[19] Han Z H, Zhu P X, Guo J X, et al. Effects of microstructures of Ti anode coating with two constituents (RuO2-TiO2) and three constituent (RuO2-SnO2-TiO2) on the electrochemical properties [J]. Acta Mater. Compositae Sin., 2013, 30(6): 121
韩朝辉, 竺培显, 郭佳鑫 等. 二组元(RuO2-TiO2)及三组元(RuO2-SnO2-TiO2)Ti阳极涂层的微观组织对其电化学性能的影响 [J]. 复合材料学报, 2013, 30(6): 121
[20] Wei J F, Fu H T, Wang T Y, et al. Effect of sintering temperature on properties of graphenecontaining Ti/IrTaSnSb-G metal oxide anodes [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 248
韦鉴峰, 付洪田, 王廷勇 等. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 248
[21] Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2-IrO2-TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
[22] Radjenovic J, Bagastyo A, Rozendal R A, et al. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes [J]. Water Res., 2011, 45: 1579
[23] Wang T Y, Dong R Y, Xu S, et al. Electrochemical properties of graphene modified mixed metal oxide anodes of Ti/IrTaSnSb-G in NaCl solutions at low temperature [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 289
王廷勇, 董如意, 许 实 等. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能 [J]. 中国腐蚀与防护学报, 2020, 40: 289
[24] Lian F. Study on improving of carbon nanotubes on the performance of Ti-based metal oxide anode [D]. Qingdao: Qingdao University of Science and Technology, 2015
廉 锋. 碳纳米管改善钛基金属氧化物阳极性能的研究 [D]. 青岛: 青岛科技大学, 2015
[25] Wang Q, Wang R, Xu H B. Preparation and electrocatalytic properties of Ir0.08Ti0.92O2 and Pt/Ir0.08Ti0.92O2 [J]. Chem. J. Chin. Univ., 2014, 35: 1962
王 强, 王 锐, 徐海波. Ir0.08Ti0.92O2及其载Pt催化剂的制备与电催化性能 [J]. 高等学校化学学报, 2014, 35: 1962
[26] Zeng Q Y. Preparation of graphene-enhanced RuO2-IrO2-SnO2 anode and the investigation of its electrocatalytic properties [D]. Harbin: Harbin Engineering University, 2021
曾庆杨. 石墨烯增强RuO2-IrO2-SnO2阳极的制备及电催化性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021
[1] LIU Chao, DAI Wenhe, WANG Kejun, CHEN Zengyao, AN Yanjun, LIU Zhiyong. Effect of Cu Content on Corrosion Behavior of Q420 Steel in an Artificial Solution of Bottom Plate Environment of Cargo Oil Tanks[J]. 中国腐蚀与防护学报, 2024, 44(4): 927-938.
[2] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[3] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[4] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[5] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[6] ZHOU Guohua,. Electrochemical Corrosion of MWCNTs/AZ31 Composite[J]. 中国腐蚀与防护学报, 2013, 33(5): 430-434.
[7] GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian. ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[8] Hui Li. Electrochemical Performance of RuTiSnMn/Ti Anode[J]. 中国腐蚀与防护学报, 2004, 24(5): 280-283 .
No Suggested Reading articles found!