Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 540-552    DOI: 10.11902/1005.4537.2023.246
Current Issue | Archive | Adv Search |
Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure
LI Gangqing1, LIU Xi2, SUN Xiaoguang1, PAN Jinglong2, CAO Xiangkang2, DONG Zehua2()
1. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China
2. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

LI Gangqing, LIU Xi, SUN Xiaoguang, PAN Jinglong, CAO Xiangkang, DONG Zehua. Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 540-552.

Download:  HTML  PDF(11619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Organic coating is widely applied to hinder the corrosion of large-scale engineering facilities, such as offshore platforms, oceangoing freighters, oil and gas pipelines and rail equipment etc. However, coatings are often severely deteriorated in harsh service environments, thus leading to corrosion of metallic substrates, which may not only threaten the service safety of the engineering facilities but also cause significant economic losses. Moreover, the coating degradation is an unavoidable and spontaneous process, and it should be mentioned especially that some hidden coating defects are hard to be detected. Therefore, it has become a research hotspot to develop coatings with function of defect self-disclosure for early detection and maintenance of defects by applying color reaction or fluorescence probe technology. In this review, we summarize the latest advances in coatings of defect self-disclosure, as well as the relevant trigger mechanisms and preparation strategies. First, the coatings of defect self-disclosure can be classified as corrosion-triggered type and mechanical-triggered type based on their mechanisms. Then the corrosion-triggered coatings may be subdivided into pH response and metal ion response according to the fluorescence change or color reaction. Moreover, it sorts out the diverse characteristics of those coatings such as their sensing principles, influencing factors, advantages and drawbacks, and fluorescence/coloration performances. Second, two kinds of preparation strategies for coatings of defect self-disclosure are introduced, one is grafting indicator groups onto polymer chain segments to prepare coatings of intrinsic defect self-disclosure, and the other is to incorporate nano-containers loaded with indicator as the functional filler. The differences and limitations of these strategies are compared and analyzed, further focusing on the key role of nanocontainers and their compatibility with different types of coatings of defect self-disclosure. In addition, the corrosion inhibitors, healing agents, and polymer microcapsules in the coatings of defect self-disclosure can not only realize defect indication but also endow their corrosion self-healing performance for boosting their application in the industrial field. Finally, it is envisioned the development prospect of coatings of defect self-disclosure to provide theoretical guidance for the design and application of the coatings of defect self-disclosure.

Key words:  coating aging      self-reporting      fluorescent probe      color change      self-healing     
Received:  10 August 2023      32134.14.1005.4537.2023.246
ZTFLH:  TG174.4  
Fund: National Key Research and Development Program(2020YFE0204900);CRRC Key Research and Development Project(2021CDB292)
Corresponding Authors:  DONG Zehua, E-mail: zhdong@hust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.246     OR     https://www.jcscp.org/EN/Y2024/V44/I3/540

Fig.1  Discoloration mechanism of phenolphthalein[17]
Fig.2  Fluorescence mechanism of fluorescein (a)[24], FD1 (b)[26] and coumarin 120 (c)[28]
Fig.3  Complexation mechanism of phenanthroline (a)[34] and tannic acid (b)[32]
Fig.4  DCF color change mechanism (a), comparison of scratches reporting between blank epoxy coating and epoxy coating with 10% DCF microcapsules (b), early reporting of 15% DCF microcapsule coating for varying scratches depth (c) and schematic diagram of color change due to mechanical damage (d)[43]
Fig.5  Discoloration mechanism of spiropyran modified coating[45]
Fig.6  Synthesis of chemically modified acrylic coatings (a) and comparison of AMP 0%, 2.5% and 3% coatings before and after soaking in 3.5%NaCl solution (b)[55]
Fig.7  Preparation of MSN-PC (a) and salt spray test of blank epoxy coating and 4% MSN-PC containing epoxy coating (b)[69]
Reacting speciesColor indicatorContainerSubstrateChangeCoating
Mechanically-DCF + aminePU/UFSteelRedEpoxy[43]
triggered-CVL + SiO2PMMASteelBlueWEP[71]
-BPF/HPS/TPEPU/UFGlassColors are related to crack depthEpoxy[49]
FluorescenceH+FD1-Al alloyBright orangeEpoxy[26]
responseH+Coumarin 120-Al alloyCHEQEpoxy[27]
OH-Coumarin

PDVB- grafting-

P (DVB- co-AA)

SteelCHEFEpoxy[72]
Fe3+FD1-SteelBright yellowEpoxy[22]
Fe3+Rhodamine B derivativeSilica nanocapsulesSteel

Bright

yellow

Poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate)[66]
Fe3+8-HQPAN1SteelCHEFEpoxy[73]
Al3+8-HQ-5-sulfonic acid-Al alloyCHEFEpoxy[56]
Al3+Phenylfluorone-Al alloyCHEQAcrylic coating[36]
Al3+Rhodamine BZr-MOFAl alloyGreenEpoxy[62]
Cu2+Rhodamine-ethylenediamine-Cu alloy

Bright

red

Epoxy[35]
Cu2+RHSZIF-8Cu alloyRose red/ CHEFEpoxy[63]
ColorOH-PhenolphthaleinSilica nanocapsulesAl alloyPinkWater-soluble acrylic urethane[64]
response
OH-PhenolphthaleinP (MMA-co-BA)SteelPinkAcrylic coating[74]
Fe2+1,10-phenanthrolineSilica nanocapsules/ChitosanSteelRedWaterborne Epoxy[34]
Fe2+1,10-phenanthroline-5-amineGraphene oxideSteelRedPolyurethane[30]
Table 1  Partial self-warning coating color indicator and its change application
Fig.8  Synthesis of PDVB-graft-P (DVB-co-AA) (a), and surface of Cu-alloy (b, c) and Al-alloy (d, e) with blank coatings (b, d) and smart coatings (c, e) after soaking in 3.5% NaCl solution for 6 h[72]
Fig.9  H2PNL20 (containing PNL) and H2PNL20MBT5 (containing PNL + MBT) coatings immersed in 3.5%NaCl solution[74]
Fig.10  Color changing mechanism of CVL (a) and schematics of WEP smart coating (b)[71]
1 Habibiyan A, Ramezanzadeh B, Mahdavian M, et al. Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application [J]. Chem. Eng. J., 2020, 391: 123630
doi: 10.1016/j.cej.2019.123630
2 Nie Z Y, Liu J H, Zhang Y W, et al. Progress of sol-gel anti-corrosion coatings on metals [J]. Surf. Technol., 2015, 44(6): 75
聂志云, 刘继华, 张有为 等. 金属表面溶胶-凝胶防腐蚀涂层的研究进展 [J]. 表面技术, 2015, 44(6): 75
3 An K, Sui Y, Qing Y Q, et al. Synergistic reinforcement coating with anti-corrosion and UV aging resistance by filling modified CeO2 nanoflakes [J]. Colloid. Surf., 2021, 625A: 126904
4 Wu K Y, Chen Y X, Luo J, et al. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency [J]. J. Colloid Interface Sci., 2021, 600: 660
doi: 10.1016/j.jcis.2021.05.066
5 Haddadi S A, Hu S J, Ghaderi S, et al. Amino-functionalized MXene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel [J]. ACS Appl. Mater. Interfaces, 2021, 13: 42074
doi: 10.1021/acsami.1c13055
6 Da Silva Lopes T, Lopes T, Martins D, et al. Accelerated aging of anticorrosive coatings: Two-stage approach to the AC/DC/AC electrochemical method [J]. Prog. Org. Coat., 2020, 138: 105365
7 Zhang D P, Sun M M, Cao X K, et al. Progress in corrosion inhibitor evaluation and corrosion monitoring technology in oil recovery industries [J]. Surf. Technol., 2020, 49(11): 1
张德平, 孙苗苗, 曹祥康 等. 油气工业缓蚀剂评价与腐蚀监测技术进展 [J]. 表面技术, 2020, 49(11): 1
8 Fan Z, Hu M, Zhang K, et al. Review of on-line monitoring of oil and gas pipelines corrosion in acidic environment by acoustic emission technology [J]. Surf. Technol., 2019, 48(4): 245
范 舟, 胡 敏, 张 坤 等. 声发射在线监测酸性环境下油气管材腐蚀研究综述 [J]. 表面技术, 2019, 48(4): 245
9 Kopf L F, Tighe R C. Automated detection and quantification of the onset of undercoating corrosion using pulsed thermography [J]. Mater. Corros., 2023, 74: 777
10 Enikeev M R, Potemkin D I, Enikeeva L V, et al. Analysis of corrosion processes kinetics on the surface of metals [J]. Chem. Eng. J., 2020, 383: 123131
doi: 10.1016/j.cej.2019.123131
11 Ma L W, Wang J K, Ren C H, et al. Detection of corrosion inhibitor adsorption via a surface-enhanced Raman spectroscopy (SERS) silver nanorods tape sensor [J]. Sensor. Actuat., 2020, 321B: 128617
12 Zhang D W, Wang L T, Qian H C, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions [J]. J. Coat. Technol. Res., 2016, 13(1): 11
doi: 10.1007/s11998-015-9744-6
13 Li M, Liu W F, Zhang Q, et al. Mechanical force sensitive acrylic latex coating [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15156
doi: 10.1021/acsami.7b04154
14 Cao L, Wang Q, Wang W, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions [J]. ACS Appl. Mater. Interfaces, 2022, 14: 27168
doi: 10.1021/acsami.2c05048
15 Yoon S, Choi J H, Sung B J, et al. Mechanochromic and thermally reprocessable thermosets for autonomic damage reporting and self-healing coatings [J]. NPG Asia Mater., 2022, 14: 61
doi: 10.1038/s41427-022-00406-3
16 Yimkosol W, Dangkulwanich M. Finding the pKa values of a double-range indicator thymol blue in a remote learning activity [J]. J. Chem. Educ., 2021, 98: 3930
doi: 10.1021/acs.jchemed.1c00122
17 Cui W H, Chen Q, Jia R Y, et al. Several common mechanisms of color change reaction of phenolphthalein indicator [J]. Shandong Chem. Ind., 2018, 47(23): 90
崔文辉, 陈 强, 贾如琰 等. 酚酞指示剂变色反应的几种常见机理 [J]. 山东化工, 2018, 47(23): 90
18 Sousa I, Quevedo M C, Sushkova A, et al. Chitosan microspheres as carriers for pH-indicating species in corrosion sensing [J]. Macromol. Mater. Eng., 2020, 305: 1900662
doi: 10.1002/mame.v305.2
19 Lee T H, Song Y K, Park S H, et al. Dual stimuli responsive self-reporting material for chemical reservoir coating [J]. Appl. Surf. Sci., 2018, 434: 1327
doi: 10.1016/j.apsusc.2017.11.219
20 Zhang J, Frankel G S. Corrosion-sensing behavior of an acrylic-based coating system [J]. Corrosion, 1999, 55: 957
doi: 10.5006/1.3283932
21 Maia F, Tedim J, Bastos A C, et al. Active sensing coating for early detection of corrosion processes [J]. RSC. Adv., 2014, 4: 17780
doi: 10.1039/c4ra00826j
22 Augustyniak A, Tsavalas J, Ming W H. Early detection of steel corrosion via “Turn-On” fluorescence in smart epoxy coatings [J]. ACS Appl. Mater. Interfaces, 2009, 1: 2618
doi: 10.1021/am900527s
23 Zhou S K, Guo H L, Gu L. Research progress on design, preparation and application of fluorescent coatings [J]. Surf. Technol., 2021, 50(11): 30
周少魁, 郭宏磊, 顾 林. 荧光涂层的设计、制备与应用研究进展 [J]. 表面技术, 2021, 50(11): 30
24 Mchedlov-Petrossyan N O, Cheipesh T A, Roshal A D, et al. Aminofluoresceins versus fluorescein: peculiarity of fluorescence [J]. J. Phys. Chem., 2019, 123A: 8860
25 Wang Y, Wang K M, Shen G L, et al. A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin [J]. Talanta, 1997, 44: 1319
pmid: 18966869
26 Augustyniak A, Ming W H. Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings [J]. Prog. Org. Coat., 2011, 71: 406
doi: 10.1016/j.porgcoat.2011.04.013
27 Liu G, Wheat H G. Use of a fluorescent indicator in monitoring underlying corrosion on coated aluminum 2024-T4 [J]. J. Electrochem. Soc., 2009, 156: C160
doi: 10.1149/1.3078395
28 Bozkurt E, Onganer Y. Photophysical features of coumarin 120 in reverse micelles [J]. J. Mol. Struct., 2018, 1173: 490
doi: 10.1016/j.molstruc.2018.07.019
29 Hancock R D. The pyridyl group in ligand design for selective metal ion complexation and sensing [J]. Chem. Soc. Rev., 2013, 42: 1500
doi: 10.1039/c2cs35224a pmid: 23092949
30 Li J, Jiang Z Y, Gan L Z, et al. Functionalized graphene/polymer composite coatings for autonomous early-warning of steel corrosion [J]. Compos. Commun., 2018, 9: 6
doi: 10.1016/j.coco.2018.04.002
31 Yan W T, Shi M Q, Dong C X, et al. Applications of tannic acid in membrane technologies: A review [J]. Adv. Colloid. Interface, 2020, 284: 102267
doi: 10.1016/j.cis.2020.102267
32 Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering [J]. Science, 2013, 341(6142): 154
doi: 10.1126/science.1237265 pmid: 23846899
33 Liu C B, Qian B, Hou P M, et al. Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings [J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429
doi: 10.1021/acsami.0c22642
34 Liu C B, Jin Z Y, Cheng L, et al. Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings [J]. Nanoscale, 2020, 12: 3194
doi: 10.1039/c9nr09221h pmid: 31967166
35 Tian X L, Feng C, Zhao X H. Corrosion monitoring effect of rhodamine-ethylenediamine on copper relics under a protective coating [J]. ACS Omega., 2020, 5: 21679
doi: 10.1021/acsomega.0c02535
36 Li S M, Zhang H R, Liu J H. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024 [J]. Trans. Nonferr. Met. Soc. China, 2006, 16(suppl.1): S159
doi: 10.1016/S1003-6326(06)60166-0
37 Maia F, Tedim J, Bastos A C, et al. Nanocontainer-based corrosion sensing coating [J]. Nanotechnology, 2013, 24: 415502
doi: 10.1088/0957-4484/24/41/415502
38 Mata D, Scharnagl N, Lamaka S V, et al. Validating the early corrosion sensing functionality in poly (ether imide) coatings for enhanced protection of magnesium alloy AZ31 [J]. Corros. Sci., 2018, 140: 307
doi: 10.1016/j.corsci.2018.05.034
39 Fernine Y, Arrousse N, Haldhar R, et al. Synthesis and characterization of phenolphthalein derivatives, detailed theoretical DFT computation/molecular simulation, and prevention of AA2024-T3 corrosion in medium 3.5% NaCl [J]. J. Taiwan Inst. Chem. Eng., 2022, 140: 104556
doi: 10.1016/j.jtice.2022.104556
40 Wang J K, Huang Y, Ma L W, et al. Corrosion-sensing and self-healing dual-function coating based on 1,10-phenanthroline loaded urea formaldehyde microcapsules for carbon steel protection [J]. Colloid. Surf., 2022, 652A: 129855
41 Truc T A, Thuy T T, Oanh V K, et al. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel [J]. Surf. Interfaces, 2019, 14: 26
42 Liu J J, Li M, Luo C Y, et al. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence [J]. Chem. Eng. J., 2022, 431: 134162
doi: 10.1016/j.cej.2021.134162
43 Li W L, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings [J]. Adv. Mater., 2016, 28: 2189
doi: 10.1002/adma.v28.11
44 Zhang Y J, Dong J, Sun H X, et al. Solvatochromic coatings with self-cleaning property from palygorskite@polysiloxane/crystal violet lactone [J]. ACS Appl. Mater. Interfaces, 2016, 8: 27346
doi: 10.1021/acsami.6b09252
45 Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials [J]. Nature, 2009, 459(7243): 68
doi: 10.1038/nature07970
46 Lam J W Y, Luo J D, Peng H L, et al. Linear and hyperbranched polymers with high thermal stability and luminescence efficiency [J]. Chin. J. Polym. Sci., 2001, 19: 585
47 Li K T, Lin Y J, Lu C. Aggregation-induced emission for visualization in materials science [J]. Chem. Asian J., 2019, 14: 715
doi: 10.1002/asia.v14.6
48 Liang J, Tang B Z, Liu B. Specific light-up bioprobes based on AIEgen conjugates [J]. Chem. Soc. Rev., 2015, 44: 2798
doi: 10.1039/c4cs00444b pmid: 25686761
49 Lu X C, Li W L, Sottos N R, et al. Autonomous damage detection in multilayered coatings via integrated aggregation-induced emission luminogens [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40361
doi: 10.1021/acsami.8b16454
50 Dhole G S, Gunasekaran G, Singh S K, et al. Smart corrosion sensing phenanthroline modified alkyd coatings [J]. Prog. Org. Coat., 2015, 89: 8
51 Dhole G S, Gunasekaran G, Baloji Naik R, et al. Modified epoxy coatings for corrosion detection [J]. Corrosion, 2017, 73: 326
doi: 10.5006/2089
52 Dhole G S, Gunasekaran G, Naik R, et al. Fluorescence based corrosion detecting epoxy coating [J]. Prog. Org. Coat., 2020, 138: 105425
53 Yuan K X, Peng Q H, Yuan D D, et al. A multifunctional polyurethane with solid-state and acid-base responsive fluorescent emission [J]. J. Lumin., 2020, 228: 117595
doi: 10.1016/j.jlumin.2020.117595
54 He X H, Hu L Q, Zou L S, et al. Enhanced fluorescence properties of flexible waterborne polyurethane films by blocking fluorescein isothiocyanate (FITC) [J]. Mater. Lett., 2021, 293: 129668
doi: 10.1016/j.matlet.2021.129668
55 Dhole G S, Gunasekaran G, Ghorpade T, et al. Smart acrylic coatings for corrosion detection [J]. Prog. Org. Coat., 2017, 110: 140
56 Bryant D E, Greenfield D. The use of fluorescent probes for the detection of under-film corrosion [J]. Prog. Org. Coat., 2006, 57: 416
doi: 10.1016/j.porgcoat.2006.09.027
57 Raps D, Hack T, Wehr J, et al. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024 [J]. Corros. Sci., 2009, 51: 1012
doi: 10.1016/j.corsci.2009.02.018
58 Roshan S, Dariani A A S, Mokhtari J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator [J]. Appl. Surf. Sci., 2018, 440: 880
doi: 10.1016/j.apsusc.2018.01.188
59 Wang J P, Song Y, Wang J K, et al. pH-responsive polymer coatings for reporting early stages of metal corrosion [J]. Macromol. Mater. Eng., 2017, 302: 1700128
doi: 10.1002/mame.v302.9
60 Martins R, Figueiredo J, Sushkova A, et al. “Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms [J]. Environ. Pollut., 2022, 302: 118973
doi: 10.1016/j.envpol.2022.118973
61 Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
叶三男, 王 培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
62 Fan D H, Liu X B, Qi K, et al. A smart-sensing coating based on dual-emission fluorescent Zr-MOF composite for autonomous warning of coating damage and aluminum corrosion [J]. Prog. Org. Coat., 2022, 172: 107150
63 Wang H, Fan Y, Tian L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion [J]. Mater. Lett., 2020, 265: 127419
doi: 10.1016/j.matlet.2020.127419
64 Galvão T L P, Sousa I, Wilhelm M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers [J]. Chem. Eng. J., 2018, 341: 526
doi: 10.1016/j.cej.2018.02.061
65 Liu C B, Wu H, Qiang Y J, et al. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties [J]. Corros. Sci., 2021, 184: 109355
doi: 10.1016/j.corsci.2021.109355
66 Exbrayat L, Salaluk S, Uebel M, et al. Nanosensors for monitoring early stages of metallic corrosion [J]. ACS Appl. Nano Mater., 2019, 2: 812
doi: 10.1021/acsanm.8b02045
67 Dieleman C D, Denissen P J, Garcia S J. Long-term active corrosion protection of damaged coated-AA2024-T3 by embedded electrospun inhibiting nanonetworks [J]. Adv. Mater. Interfaces, 2018, 5: 1800176
doi: 10.1002/admi.v5.12
68 Liu T, Zhang D W, Ma L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers [J]. Corros. Sci., 2022, 200: 110254
doi: 10.1016/j.corsci.2022.110254
69 Wang J K, Ma L W, Guo X, et al. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating [J]. Chem. Eng. J., 2022, 433: 134515
doi: 10.1016/j.cej.2022.134515
70 Dararatana N, Seidi F, Crespy D. pH-sensitive polymer conjugates for anticorrosion and corrosion sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10: 20876
doi: 10.1021/acsami.8b05775
71 Tao Z L, Cui J C, Qiu H X, et al. Microcapsule/silica dual-fillers for self-healing, self-reporting and corrosion protection properties of waterborne epoxy coatings [J]. Prog. Org. Coat., 2021, 159: 106394
72 Wang J P, Wang J K, Zhou Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core-shell nanostructures [J]. Macromol. Mater. Eng., 2018, 303: 1700616
doi: 10.1002/mame.v303.4
73 Taheri N, Sarabi A A, Roshan S. Investigation of intelligent protection and corrosion detection of epoxy-coated St-12 by redox-responsive microcapsules containing dual-functional 8-hydroxyquinoline [J]. Prog. Org. Coat., 2022, 172: 107073
74 Salaluk S, Auepattana-Aumrung K, Thongchaivetcharat K, et al. Nanonetwork composite coating for sensing and corrosion inhibition [J]. Adv. Mater. Interfaces, 2020, 7: 2001073
doi: 10.1002/admi.v7.20
75 Fan Y, Wang J K, Ma L W, et al. Research progress of photothermally triggered self-healing coatings [J]. Surf. Technol., 2020, 49(2): 135
范 益, 王金科, 马菱薇 等. 光热自修复涂层的研究进展 [J]. 表面技术, 2020, 49(2): 135
76 Beach M, Davey T, Subramanian P, et al. Self-healing organic coatings–Fundamental chemistry to commercial application [J]. Prog. Org. Coat., 2023, 183: 107759
77 Ahmed S, Bae M J, Jeong S, et al. Design of eco-friendly self-healing polymers containing hindered urea-based dynamic reversible bonds [J]. ACS Appl. Polym. Mater., 2022, 4: 8136
doi: 10.1021/acsapm.2c01087
78 Montano V, Wempe M M B, Does S M H, et al. Controlling healing and toughness in polyurethanes by branch-mediated tube dilation [J]. Macromolecules, 2019, 52: 8067
doi: 10.1021/acs.macromol.9b01554 pmid: 31736512
79 Fu X, Du W B, Dou H X, et al. Nanofiber composite coating with self-healing and active anticorrosive performances [J]. ACS Appl. Mater. Interfaces, 2021, 13: 57880
doi: 10.1021/acsami.1c16052
80 Zhang F, Ju P F, Pan M Q, et al. Self-healing mechanisms in smart protective coatings: A review [J]. Corros. Sci., 2018, 144: 74
doi: 10.1016/j.corsci.2018.08.005
81 Wessling B. Scientific and commercial breakthrough for organic metals [J]. Synth. Met., 1997, 85: 1313
doi: 10.1016/S0379-6779(97)80254-8
82 Liu C B, Cheng L, Qian B, et al. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors [J]. Nanoscale, 2022, 14: 8429
doi: 10.1039/d2nr01406h pmid: 35642496
[1] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[2] ZHANG Yong,FAN Weijie,ZHANG Taifeng,WANG Andong,CHEN Yueliang. Review of Intelligent Self-healing Coatings[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
No Suggested Reading articles found!