Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1399-1406    DOI: 10.11902/1005.4537.2022.381
Current Issue | Archive | Adv Search |
Influence of Inner Diameter of Nozzle on Stress State of Horizontal Reactor Nozzle
HE Binbin1, HOU Yu1, WU Zixuan1, LI Zili1, LI Tao2, YAN Jianwei1()
1.State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Assurance, East China Jiaotong University, Nanchang 330013, China
2.Jiangxi Pingxiang Longfa Industrial Co., Ltd., Pingxiang 337100, China
Cite this article: 

HE Binbin, HOU Yu, WU Zixuan, LI Zili, LI Tao, YAN Jianwei. Influence of Inner Diameter of Nozzle on Stress State of Horizontal Reactor Nozzle. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1399-1406.

Download:  HTML  PDF(4512KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By taking the three working loads into account, namely pressure, temperature and pressure/temperature coupling, several finite element models for pipe parts with different inner diameters were constructed respectively, and then the triaxial distribution of pipe stresses of the special acid-, temperature- and pressure-resistant brick and Asplit HB cement was analyzed by different inner diameters of pipe nozzle under three working conditions. The dangerous degree of different positions of the pipe nozzle during working process is clarified. The results show that for the special acid-, temperature- and pressure-resistant brick, the larger the radius of the pipe opening, the larger the maximum tensile stress in the radial and annular direction under the action of pressure load. Under the action of temperature load, the maximum tensile stress in radial and axial direction increases. Under the coupled pressure/temperature load, the maximum tensile stress in all three directions increases. For Asplit HB cement, the maximum axial tensile stress increases with the increase of the radius of the pipe mouth under pressure load. Under the action of temperature load, the maximum tensile stress in the annular direction increases with the increase of the tube orifice radius, while in the axial direction, the maximum tensile stress decreases with the increase of the tube orifice radius. Under the pressure/temperature coupling load, the maximum radial tensile stress increases with the increase of the orifice radius.

Key words:  horizontal reactor      tube diameter      finite element model      stress analysis      Asplit HB cement     
Received:  05 December 2022      32134.14.1005.4537.2022.381
ZTFLH:  TQ050.3  
Fund: National Natural Science Foundation of China(12072112);Jiangxi Provincial Science Fund for Distinguished Young Scholars(20202ACBL214014)
Corresponding Authors:  YAN Jianwei, E-mail: jianwei@mail.ustc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.381     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1399

Fig.1  Diagram of the horizontal reactor (a), nozzle (b) and its finite element model (c)
Material

Tensile

strength MPa

Compressive

strength

MPa

Elastic modulus

GPa

Coefficient of expansion

×10-6/K

Thermal conductivity

W/(m·K)

Poisson's ratioDensity kg/m3
Steel490-620/20910.6-12.2480.37850
Special acid, temperature and pressure resistant brick2180-12022-483.0-5.41.0-2.10.2-0.322150-2600

Asplit HB

Cement

103011121.20.3-0.352000
Lead14.715.11729.3350.4211680
Diaphragm62-69≥403.1-3.362.40.2-2.20.3-0.41020
PTEF19.61-35.2119.520.28103-1140.2560.42100-2300
TA2440-620>460 (yield)11710.219.30.334506
Table 1  Structural performance parameters of each layer of horizontal reactor
Working conditionNozzle typeRadial stress MPaAnnular stress MPaAxial stress MPaVon Mises stress MPa

Working condition I

(pressure only)

a-type9.6117.456.7620.04
b/c/f-type17.3922.046.8628.52
d-type7.7910.341.8414.28

Working condition Ⅱ

(temperature only)

a-type18.1011.2311.9948.03
b/c/f-type21.4813.1716.1857.06
d-type13.5012.027.3627.58

Working condition Ⅲ

(pressure / temperature combination)

a-type20.2023.1413.5924.52
b/c/f-type24.0624.8014.5734.22
d-type15.5120.8311.6418.35
Limit (MPa)21
Table 2  Summary of the stresses in different directions of three types of special acid-, temperature- and pressure-resistant brick at the nozzle under three working conditions
Fig.2  Stress distribution cloud map of 50 mm thick steel shell under working condition 1
Fig.3  Stress distribution cloud maps of a-type nozzle special acid-, temperature- and pressure-resistant brick under working condition 1 (a1-a4), 2 (b1-b4) and 3 (c1-c4): (a1-c1) radial stress, (a2-c2) annular stress, (a3-c3) axial stress, (a4-c4) von Mises stress
Fig.4  Stress distribution cloud maps of a-type nozzle Asplit HB cement under working condition 1 (a1-a4), 2 (b1-b4) and 3 (c1-c4): (a1-c1) radial stress, (a2-c2) annular stress, (a3-c3) axial stress, (a4-c4) von Mises stress
Working conditionNozzle typeRadial stress MPaAnnular stress MPaAxial stress MPaVon Mises stress MPa

Working condition I

(pressure only)

a-type12.2522.8515.6717.69
b/c/f-type14.8618.7818.5721.29
d-type12.3711.5612.5314.03

Working condition Ⅱ

(temperature only)

a-type19.2114.0818.8054.02
b/c/f-type20.6215.6813.7058.1
d-type20.9016.7115.0036.70

Working condition Ⅲ

(pressure / temperature combination)

a-type20.6820.7619.5945.90
b/c/f-type22.1622.9014.0249.36
d-type18.8810.1614.5643.35
Limit (MPa)10
Table 3  Summary of the stresses in different directions of three types of Asplit HB cement at the nozzle under three working conditions
Structure typeNozzle typeRadial stress / MPaAnnular stress / MPaAxial stress / MPa
TA2a-type-199.48-60.25-235.38-34.83-238.75-33.77
b/c/f-type-205.31-65.87-231.30-45.70-236.79-49.91
d-type-178.61-68.24-265.90-45.72-264.79-34.77
Diaphragma-type-26.42-14.80-28.88-3.32-29.59-3.73
b/c/f-type-25.65-16.37-27.36-3.12-29.54-4.12
d-type-24.18-14.87-24.75 - -1.65-27.34 - -1.45
PTEFa-type-5.68 - -0.41-7.67 - -0.49-7.53 - -0.78
b/c/f-type-5.06 - -0.39-6.58 - -0.51-6.35 - -0.72
d-type-6.28 - -1.04-8.74 - -1.10-8.49 - -1.29
Leada-type-36.02-13.25-19.77-36.41-41.73-0.37
b/c/f-type-37.92-26.84-30.98-60.52-47.25-15.80
d-type-41.37-2.75-25.21-38.00-51.51-0.51
Table 4  Summary of the stresses in different directions of TA2, diaphragm, Teflon and lead layer of three types of nozzle under working condition 3
1 Zou X P, Wang H B. A brief discussion about nonferrous metallurgy autoclave and it’s key auxiliary equipments [J]. Mining Metall., 2016, 25(6): 60
邹小平, 王海北. 浅谈有色金属冶金加压反应釜及其关键附属设备 [J]. 矿冶, 2016, 25(6): 60
2 Shi Y X, Yuan T, Meng T, et al. Autoclave: principles, operations, precautions, and applications [J]. Chin Sci Bull, 2022, 67: 2366
doi: 10.1360/TB-2022-0061
石钰鑫, 袁廷, 孟婷 等. 反应釜的原理、操作、注意事项及应用 [J]. 科学通报, 2022, 67: 2366
3 Chen X Y, Xu C. Heat transfer performance researches on the horizontal reactors with spiral wing jackets [J]. Chem. Eng. Mach., 2010, 37: 351
陈晓英, 徐 诚. 卧式反应釜螺旋导流夹套传热性能研究 [J]. 化工机械, 2010, 37: 351
4 Chen J, Chen H. Sliding mode control for continuous stirred tank reactor based on Takagi-Sugeno fuzzy bilinear models [J]. Comput. Meas. Control, 2021, 29: 103
陈 珺, 陈 汉. 基于模糊双线性模型的连续搅拌反应釜滑模控制 [J]. 计算机测量与控制, 2021, 29: 103
5 Yuan F L, Li S H, Fan Z T, et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications [J]. Nano Today, 2016, 11: 565
doi: 10.1016/j.nantod.2016.08.006
6 Zhang S G, Yan S L, Chen G, et al. Stress analysis of flash vessel with refractory brick lining by finite element method [J]. Corros. Prot., 2010, 31: 973
张诗光, 晏石林, 陈 刚 等. 陶砖衬里闪蒸罐有限元应力分析 [J]. 腐蚀与防护, 2010, 31: 973
7 Zuo A D. Stress analysis and optimum design for sealed cone and notched cone at flanged structure of jacket in reacting vessel [J]. Process Equip. Pip., 2020, 57(4): 6
左安达. 反应釜夹套封口锥和凹口锥翻边结构的应力分析和优化设计 [J]. 化工设备与管道, 2020, 57(5): 6
8 Chao J W, Zhang J, Xu J W. Structure design and stress analysis of head on the stainless steel reaction still [J]. Press. Vessel Technol., 2008, 25(1): 28
巢建伟, 张 晶, 许进文. 不锈钢反应釜顶盖开孔结构设计和应力分析 [J]. 压力容器, 2008, 25(1): 28
9 Kashkoli M D, Tahan K N, Nejad M Z. Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel [J]. Steel Compos. Struct., 2019, 32: 701
doi: 10.12989/scs.2019.32.6.701
10 Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535
doi: 10.11902/1005.4537.2020.139
11 Ai F F, Chen Y Q, Zhong B, et al. Stress corrosion cracking behavior of T95 oil well pipe steel in sour environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 469
艾芳芳, 陈义庆, 钟 彬 等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制 [J]. 中国腐蚀与防护学报, 2020, 40: 469
doi: 10.11902/1005.4537.2019.282
12 Deng J L, Yan M C, Gao B W, et al. Corrosion behavior of pipeline steel under high-speed railway dynamic AC interference [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 127
邓佳丽, 闫茂成, 高博文 等. 高铁动态交流干扰下管道钢的腐蚀行为试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 127
doi: 10.11902/1005.4537.2021.212
13 Wang Y. Natural frequencies of cylindrical liquid storage containers [J]. J. Chongqing Jiaotong Inst., 1996, 15(4): 42
汪 勇. 圆柱形储液容器自振频率的计算 [J]. 重庆交通学院学报, 1996, 15(4): 42
14 Arioka K. 2014 W.R. Whitney Award Lecture: change in bonding strength at grain boundaries before long-term SCC initiation [J]. Corrosion, 2015, 71: 403
doi: 10.5006/1573
15 Zhai Z Q, Toloczko M, Kruska K, et al. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water [A]. JacksonJH, ParaventiD, WrightM. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Cham: Springer, 2019: 457
16 Wu J Z, Yang S Y, An G. Study on failure mechanism of a low temperature pressure vessel [J]. Cryogenics, 2022, (1): 62
吴俊哲, 杨申音, 安 刚. 某低温压力容器失效机理研究 [J]. 低温工程, 2022, (1): 62
17 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
18 Li T F, Zha X D, Qu S, et al. Leakage analysis of top cap of an reaction still [J]. Hot Work. Technol., 2019, 48(9): 252
李天夫, 查向东, 屈 伸 等. 反应釜顶盖泄漏分析 [J]. 热加工工艺, 2019, 48(9): 252
19 Liu X, Ran D, Meng H M, et al. Effect of surface state on corrosion resistance of TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 828
刘 星, 冉 斗, 孟惠民 等. 表面状态对TC4钛合金的耐蚀性影响 [J]. 中国腐蚀与防护学报, 2021, 41: 828
No related articles found!
No Suggested Reading articles found!