Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 359-364    DOI: 10.11902/1005.4537.2022.070
Current Issue | Archive | Adv Search |
Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment
SONG Jian, ZHOU Wenhui, WANG Jinlong(), SUN Wenyao, CHEN Minghui, WANG Fuhui
Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(2783KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the corrosion troubles of Yttria Stabilized Zirconia (YSZ) materials in the marine environment, two YSZ block materials with 5% and 12% (mass fraction) Y2O3 were prepared by powder metallurgy with a discharge plasma sintering furnace, and their corrosion performance was assessed via alternative high- and low-temperature water vapor corrosion test, aiming to simulate the marine corrosive environment, encountered for thermal barrier coatings of aero engine in service. The mechanical properties and crack formation and propagation behavior of YSZ during the alternating corrosion process of low temperature steam aging and high temperature sintering were analyzed. The results of bending strength curve show that the bending strength of 5YSZ decreases by 91.4% after 14 d of corrosion test. However, for YSZ with higher Y2O3 content of 12%, its bending strength does not change significantly after tested in the same environment for the same time. Therefore, the YSZ with high Y2O3 content has stronger stability and is more suitable for marine environment.

Key words:  YSZ      ZrO2      TBCs      Low temperature degradation (LTD)      oxygen vacancy     
Received:  14 March 2022      32134.14.1005.4537.2022.070
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51801021);Ministry of Industry and Information Technology Project(MJ-2017-J-99);Fundamental Research Funds for Central Universities(N2102015)
About author:  WANG Jinlong, E-mail:Wangjinlong@mail.neu.edu.cn

Cite this article: 

SONG Jian, ZHOU Wenhui, WANG Jinlong, SUN Wenyao, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 359-364.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.070     OR     https://www.jcscp.org/EN/Y2023/V43/I2/359

Fig.1  Bending strength curves of YSZ with different Y2O3 content after cyclic corrosion in high- and low-temperature alternating steam environment
Fig.2  XRD patterns of 5YSZ (a) and 12YSZ (b) for different cycles in high- and low-temperature alternating steam environment
Fig.3  M-phase volume ratio curves of 5YSZ and 12YSZ after corrosion for different time periods
SampleY1 HW4 HW7 HW
5YSZ24.9%46%45.6%50%
12YSZ1.35%1.36%3.15%2.76%
Table 1  Mphase volume ratio of two groups of YSZ after corrosion for different time periods
Fig4  Surface morphologies of YSZ (a, b) and 5YSZ (c, d) after corrosion for as-prepared (a, c) and corrosion for 7 cycles (b, d) of 5YSZ in high- and low-temperature alternating steam environment
Fig.5  Schematic diagram of the corrosion process of YSZ in low temperature vapor environment: (a) in the prepared YSZ block, Y atoms dissolve into ZrO2 crystals and forming a stable structure. The surrounding crystals of ZrO2 are stabilized in the form of t-phase; (b) as the LTD experiments process, the water vapor induced the stable structure of YSZ to fail and the surrounded crystals of ZrO2 change to m-phase; (c) with the extension of corrosion time, almost all phase transformation processes are close to the end. Most of the crystals of ZrO2 present with m-phase
[1] Gong W, Wu C F, Zhao Z P, et al. Next-generation high-strength ceramic materials for deep-sea equipment and structural analysis [J]. Digit. Ocean Underwater Def., 2020, 3: 281
(龚文, 吴超峰, 赵治平 等. 下一代深海装备用高强度陶瓷材料及结构分析 [J]. 数字海洋与水下攻防, 2020, 3: 281)
[2] Chevalier J, Cales B, Drouin J M. Low‐temperature aging of Y‐TZP ceramics [J]. J. Am. Ceram. Soc., 1999, 82: 2150
doi: 10.1111/j.1151-2916.1999.tb02055.x
[3] Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants [J]. Annu. Rev. Mater Res., 2007, 37: 1
doi: 10.1146/annurev.matsci.37.052506.084250
[4] Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
doi: 10.1111/j.1551-2916.2009.03278.x
[5] Wolfe D E, Singh J, Miller R A, et al. Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications [J]. Surf. Coat. Technol., 2005, 190: 132
doi: 10.1016/j.surfcoat.2004.04.071
[6] Sato T, Shimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water [J]. J. Am. Ceram. Soc., 1985, 68: 356
doi: 10.1111/j.1151-2916.1985.tb15239.x
[7] Lange F F, Dunlop G L, Davis B I. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250 ℃ [J]. J. Am. Ceram. Soc., 1986, 69: 237
doi: 10.1111/j.1151-2916.1986.tb07415.x
[8] Jalkh E B B, Bergamo E T P, Monteiro K N, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: optical and mechanical characterization [J]. J. Mech. Behav. Biomed. Mater., 2020, 104: 103659
doi: 10.1016/j.jmbbm.2020.103659
[9] Miragaya L M, Guimarães R B, Souza R O A E, et al. Effect of intra-oral aging on tm phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 14
doi: S1751-6161(17)30167-4 pmid: 28432999
[10] Yoshimura M, Noma T, Kawabata K, et al. Role of H2O on the degradation process of Y-TZP [J]. J. Mater. Sci. Lett., 1987, 6: 465
doi: 10.1007/BF01756800
[11] Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules [J]. Chem. Mater., 2004, 16: 3988
doi: 10.1021/cm040167h
[12] Khor K A, Yang J. Lattice parameters, tetragonality (c/a) and transformability of tetragonal zirconia phase in plasma-sprayed ZrO2-Er2O3 coatings [J]. Mater. Lett., 1997, 31: 23
doi: 10.1016/S0167-577X(96)00245-5
[13] Borges M A P, Alves M R, Dos Santos H E S, et al. Oral degradation of Y-TZP ceramics [J]. Ceram. Int., 2019, 45: 9955
doi: 10.1016/j.ceramint.2019.02.038
[14] Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications [J]. Dent. Mater., 2018, 34: 879
doi: S0109-5641(17)30712-1 pmid: 29598882
[15] Pereira G K R, Venturini A B, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis [J]. J. Mech. Behav. Biomed. Mater., 2016, 55: 151
doi: 10.1016/j.jmbbm.2015.10.017
[16] Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2 (Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
(姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263)
[17] He Y D, Ren C, Zhang K. High-temperature oxidation resistant coatings composed of YSZ particles packaged by nano-Al2O3 film [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 316
[18] Trice R W, Su Y J, Mawdsley J R, et al. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ [J]. J. Mater. Sci., 2002, 37: 2359
doi: 10.1023/A:1015310509520
[19] Cao X Q. New Materials and Structures of Thermal Barrier Coatings [M]. Beijing: Science Press, 2016
(曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016)
[20] Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mate. Rev., 2023, 37: 21040168
(赵云松, 张迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37: 21040168)
No Suggested Reading articles found!